Регулируемый блок питания из блока питания компьютера ATX. Радиотехника, электроника и схемы своими руками. Мир периферийных устройств пк Полная функциональная проверка


Мощный импульсный лабораторный блок питания.

Основные технические характеристики:



Выходное напряжение, при токе нагрузки 10А....... 0...22V
Коэффициент стабилизации....... 200...300
Напряжение пульсаций, не более....... 200мВ
Выходное сопротивление....... 0,20м
в режиме стабилизации тока
Выходной ток, ....... 0... 10А
Напряжение пульсаций, не более....... 300мВ
Управление микросхемой TL494 осуществляем через вывод 4 , а встроенные операционники отключаем. Вся схема блока питания работает устойчиво, без возбуждения и перерегулирования. Но обязательно подобрать цепь коррекции С4 и С6.

Для этого подключаем на выход блока обычный дроссель групповой стабилизации напрямую, +12 вольтовыми выводами. Становимся осциллографом и смотрим что на выходе. Если вместо постоянки колебательный процесс, то коррекция не настроена, необходимо продолжить настройку.


На микросхеме ОУ LM324 (или любой другой счетверенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях от 0V) собран измерительный усилитель выходного напряжения и тока, который будет давать измерительные сигналы на TL494 через вывод 4. Резисторы R8 и R12 задают опорные напряжения. Переменный резистор R12 регулирует выходное напряжение, R8 - ток. Токоизмерительный резистор R7 на 0.05ом должен быть мощностью 5 ватт (10А^2*0.05ом). Питание для ОУ берём с выхода "дежурных" 20В БП ATX.
Обратите внимание чтобы на вашем блоке стояли Y - конденсаторы. Без них большой уровень шума на выходе блока и регуляторы ток и напряжения работают плохо.

Больше всех греется выходная диодная сборка, поэтому вентилятор оставляем. Питание для вентилятора берем от источника напряжением 25V, которое питает TL494, понижаем стабилизатором 7812 и подаем на вентилятор.

Лучше установить его так, чтобы он дул внутрь корпуса. Нагрузочный резистор 470ом 1Вт.
В качестве вольтметра и амперметра можно использовать либо стрелочные приборы, включённые как обычно, либо цифровой вольтамперметр, которые нужно подключить к шунту или выходам LM324 (нога 8 - напряжение, нога 14 - ток) и оттарировать тестером. Питать цифровые вольтметры можно с "дежурных" 5V - там преобразователь на 2А 5V.
Если регулировка тока не нужна, то R8 просто выкручиваем на максимум. Стабилизироваться БП будет так: если, например, установлено 15V и 3А, то если ток нагрузки меньше 3А - стабилизируется напряжение, если больше - то ток.

Индикация выполнена по классической схеме на ПВ2.


Платы управления блоком питания одинаковые для всех блоков питания.

Р
егулируемый до 150V импульсный лабораторный блок питания.

Основные технические характеристики:
в режиме стабилизации напряжения
Выходное напряжение, при токе нагрузки 1А........ 0...150V
Коэффициент стабилизации....................................... 100...200
Напряжение пульсаций, не более............................... 1000мВ
Выходное сопротивление........................................... 0,80м
в режиме стабилизации тока
Выходной ток..............................................................0... 1А
Напряжение пульсаций, не более.............................. 1000мВ

Схема как в предидущей части, но подвергаем доработке трансформатор, и вместо двух диодов ставим мостик на четырех UF304 , конденсаторы по выходу 200V 220мкф. Нагрузочный резистор 4,7 ком 1Вт.

У трансформатора расплетаем косичку, и все обмотки соединяем последовательно, сохраняя фазировку.

На плате управления меняется R3 на 100кОм .

Лабораторный БП.

По схеме всё видно, поэтому об особенностях.


Показаны только детали, которые менялись или добавлялись, остальное не трогалось.

Некоторые детали без позиционных обозначений нарисованы для лучшего восприятия схемы.


Выпаяны только несколько деталей, блокирующих работу блока при отсутствии минусовых напряжений.

В блоке выпрямитель был заменен на мостик из 2Д213А.


Дроссель групповой стабилизации перемотан более толстым проводом.

Регулировка напряжения - посредством изменения опорного напряжения от нуля до +5V. Делитель в цепи стабилизации напряжения пересчитан так, что бы при опорном напряжении +5v выходное напряжение было равно 42v. Регулировка тока нагрузки - так же посредством изменения опорного напряжения от нуля до +5В. В качестве датчика тока использован встроенный в амперметр шунт.

Блок позволяет регулировать: выходное напряжение в пределах ……. 1...41V выходной ток в пределах ……. 0,1...11А. Максимальное значение тока ограничено возможностями амперметра - 10А. При токе (6А) напряжение можно выставить вплоть до 41V, а при меньшем напряжении (22В) ток ограничен величиной 11А. "Дежурка" используется - наружу выведено постоянное напряжение +5V. Другое напряжение "дежурки" (22В) питает мс ШИМ контроллера (TL494) и вентилятор.

Зарядное устройство на базе блока питания ПК

Зарядное устройство из блока питания ПК мощностью 200 Вт.

Необходимые изменения в подключении ШИ контроллера и дополнительные элементы показаны на схеме, на которой сохранена нумерация элементов схемы. Резистор R1 сопротивлением 4,7 кОм, соединяющий вывод 1 контроллера DA1 с цепью +5В, необходимо выпаять, вывод 16 отключить от общего провода, а перемычку, соединяющую выводы 14 и 15, удалить. Кроме того, следует отпаять и удалить провода выходных цепей -12В, -5В, +5В и +12В.

Затем соединения, показанные на схеме. Для этого в необходимых местах дорожки печатной платы перерезают и припаивают к ним соответствующие выводы элементов.

Максимальный выходной ток зарядного устройства равен примерно 6,5А. Ток зарядки устанавливают переменным резистором R10. По мере зарядки напряжение на батарее, увеличиваясь, приближается к своему пределу, определяемому резистивным делителем R1R2, а ток уменьшается от установленного значения до нуля. При полной зарядке батареи устройство переходит в режим стабилизации выходного напряжения, обеспечивая компенсацию тока саморазряда. Налаживание устройства состоит в подборке резистора R1, чтобы напряжение холостого хода при среднем положении ручки установки тока было равно 13,8... 14,2V.

Блок Питания на ШИМ - контроллере SG6105 и DR-B2002

В последние несколько лет, монополия контроллера TL494, и его аналогов других фирм:
DBL494 - DAEWOO;
КА7500В - FAIRCHILD (http://www.fairchildsemi.com);
KIA494 - KEC (http://www.kec.co.kr )

IR3M02 - SHARP

А494 - FAIRCHILD

КА7500 - SAMSUNG

МВ3759 - FUJITSU и т.д.

Стала нарушаться использованием микросхем других типов, например таких как:

KA3511, SG6105, LPG-899, DR-B2002, 2003, AT2005Z, IW1688 и других. Блоки на этих МС содержат меньшее количество дискретных элементов, чем построенные на основе TL494.

Производитель микросхемы SG6105 тайваньская фирма SYSTEM GENERAL, на ее сайте (http://www.sg.com.tw ) можно получить краткое техническое описание на эту микросхему.

С микросхемой DR-B2002 сложнее - поиск информации о ней в Интернете ничего не дает.
МС IW1688 по выводам полностью идентична SG6105 , и вероятнее всего является ее полным аналогом.

МС 2003 и DR-B2002 по выводам полностью совпадают, практически они взаимозаменяемы.

В таблице приведены обозначения, номера и функциональное описание выводов обоих микросхем.


Обозначение

SG6105

DR-B2002

Выполняемая функция

PSon

1

2

Вход сигнала PS_ON, управляющего работой ИП:

PSon=0, ИП включен, присутствуют все выходные напряжения;

PSon=1, ИП выключен, присутствует только дежурное напряжение +5V_SB.


V33

2

3

Вход напряжения +3.3V.

V5

3

4

Вход напряжения +5V.

OPp

4

-

Вход для организации защиты преобразователя ИП от превышения потребляемой мощности (чрезмерного тока/КЗ в преобразователе).

UVac

5

-

Вход для организации контроля за снижением уровня (исчезновением) входного питающего переменного напряжения.

NVp

6

-

Вход для организации контроля за отрицательными выходными напряжениями.

V12

7

6

Вход напряжения +12V.

OP1/OP2

9/8

8/7

Выходы управления двухтактным полумостовым преобразователем ИП.

PG

10

9

Выход с открытым коллектором сигнала P.G. (Power Good):

PG=0, одно или несколько выходных напряжений ИП не соответствуют норме; PG=1, выходные напряжения ИП находятся в заданных пределах.



Fb2

11

-

Катод управляемого стабилитрона 2.

Vref2

12

-

Управляющий электрод управляемого стабилитрона 2.

Vref1

13

11

Управляющий электрод управляемого стабилитрона 1.

Fb1

14

10

Катод управляемого стабилитрона 1.

GND

15

12

Общий провод.

COMP

16

13

Выход усилителя ошибки и отрицательный вход компаратора ШИМ.

IN

17

14

Отрицательный вход усилителя ошибки.

SS

18

15

Положительный вход усилителя ошибки, подключен к внутреннему источнику Uref=2.5V. Используется для организации “мягкого старта” преобразователя.

Ri

19

16

Вход для подключения внешнего резистора 75k?.

Vcc

20

1

Напряжение питания, подключается к дежурному источнику +5V_SB.

PR

-

5

Вход для организации защиты ИП.

Отличия DR-B2002 от SG6105 :
DR-B2002 имеет один управляемый стабилитрон (выводы 10, 11), аналогичный TL431,

SG6105 имеет в своем составе, таких стабилитронов два (выводы 11, 12 и 13, 14);


DR-B2002 имеет один вывод для организации защиты ИП - PR (вывод 5),

у SG6105 таких выводов три – OPp (вывод 4); UVac (вывод 5); NVp (вывод 6).

На рис.1 приведена схема включения SG6105 .

Напряжение питания Vcc (вывод 20) на МС SG6105D поступает от источника дежурного напряжения +5V_SB. На отрицательный вход усилителя ошибки IN микросхемы (вывод 17) поступает сумма выходных напряжений ИП +5V и +12V , сумматор выполнен на резисторах R101-R103 1% точности. Управляемый стабилитрон 1 МС используется в схеме оптронной обратной связи в источнике дежурного напряжения +5V_SB , второй стабилитрон используется в схеме стабилизации выходного напряжения ИП +3.3V.


Напряжение с отвода первичной обмотки трансформатора Т3 поступает на однополупериодный выпрямитель D 200C 201, и через делитель R200R201 на вывод OPp (4), и используется как сигнал превышения мощности потребляемой нагрузкой от двухтактного полумостового преобразователя ИП (например, в случае КЗ на выходах ИП).

На элементах D105, R122, R123, подключенных к выводу NVp (6), выполнена схема контроля за отрицательными выходными напряжениями ИП. Напряжение с катода сдвоенного диода выпрямителя выходного напряжения +5V , через резистор R120 поступает на вход UVac (5), и используется для контроля за входным питающим переменным напряжением ИП.


Схема управления выходным двухтактным полумостовым преобразователем ИП, выполнена по стандартной двухтактной схеме на транзисторах Q5, Q6 и трансформаторе Т3.

Для питания схемы используется отдельная обмотка трансформатора дежурного режима Т2, напряжение снимается с выхода однополупериодного выпрямителя D21C28, цепь R27C27 – демпфирующая.

На рис.2 представлена схема включения DR-B2002 или 2003 .


Поскольку для организации защиты у микросхемы DR-B2002 имеется только один вывод PR (5), то он одновременно используется для организации защиты от превышения мощности, потребляемой нагрузкой от двухтактного полумостового преобразователя ИП, и для контроля отрицательных выходных напряжений ИБП.

Сигнал, уровень которого пропорционален мощности потребляемой от преобразователя ИП снимается со средней точки первичной обмотки разделительного трансформатора Т3, далее через диод D11 и резистор R35 поступает на корректирующую цепочку R42;R43;R65;C33, после которой подается на вывод PR микросхемы. Контроль отрицательных выходных напряжений осуществляется при помощи элементов R44, R47, R58, R63, D24, D27.

Поскольку в составе DR-B2002 есть только один управляемый стабилитрон, который используется в схеме стабилизатора напряжения +3.3V, в схеме оптронной обратной связи в источнике дежурного напряжения +5V_SB используется отдельный управляемый стабилитрон TL431.

Схема стабилизации выходного напряжения +3.3V, применяемая в ИБП (рис.3) содержит усилитель ошибки на управляемом стабилитроне, входящем в состав микросхемы SG6105D.

Напряжение на его вход поступает с выхода ИБП +3.3V через делитель R31R32R33, усилитель ошибки управляет биполярным транзистором Q7 типа KN2907A, обеспечивающим в свою очередь формирование так называемого “сбросового тока” через специальный насыщающийся дроссель L1, включенный между вторичной 5-ти вольтовой обмоткой выходного импульсного трансформатора Т1 и выпрямителем напряжения +3.3V – сдвоенным диодом Шоттки D9 типа MBR2045CT.

Под действием сбросового тока дроссель L1 входит в состояние насыщения, при этом его индуктивность уменьшается, соответственно уменьшается и сопротивление дросселя переменному току.



В случае, когда сбросовый ток минимален, либо отсутствует, дроссель L1 имеет максимальную индуктивность, и соответственно максимальное сопротивление переменному току, при этом уменьшается напряжение, поступающее на вход выпрямителя +3.3V, и соответственно происходит уменьшение напряжения на выходе ИП +3.3V. Подобная схема позволяет при небольшом количестве применяемых элементов осуществлять регулировку (стабилизацию) в цепи с весьма солидным выходным током (например, для ИП LPK2-4 300W по цепи +3.3V заявлено - 18 Ампер).

Упрощенную проверку описываемых микросхем можно провести следующим образом: на вывод Vcc относительно вывода GND подается внешнее питающее напряжение (5В), при кратковременном замыкании выводов SS и Vcc микросхемы, на ее выходах OP1 и OP2 осциллографом можно видеть прямоугольные импульсы. Следует только отметить, что этот способ не позволяет проверить цепи включения (PSon), формирования сигнала PG и пр.

Встроенные управляемые стабилитроны микросхем проверяются как обычные, дискретные TL431.

Как пересчитывать под другое сопротивление шунта?


Iн=(Uоп/(R2/R1+1))/Rш

Для примера получается следующее:

Если:
Uоп = 5В (опорное напряжение);
R2 = 10КОм;
R1 = 0,27КОм;
Rш = 0,01Ом

То:
Iн=(5В/(10КОм/0,27КОм+1))/0,01Ом=13А

Подставьте свои данные и получите номиналы резисторов.

Величиной одного, из которых задайтесь сразу...

МС ШИМ контроллер LPG899 БП ATX

Микросхемой LPG 899 обеспечивается выполнение следующих функций:

Формирование сигналов для управления силовыми транзисторами двухтактного преобразователя;

Контроль выходных напряжений блока питания (+3.3v, +5v, +12v) на предмет их повышения, а также на наличие короткого замыкания в каналах;

Защита от значительного превышения напряжения;

- контроль отрицательных напряжений блока питания (-12v и -5v);

Формирование сигнала Power Good;

Контроль сигнала удаленного включения (PS _ ON) и запуск блока питания в момент активизации этого сигнала;

Обеспечение "мягкого" старта блока питания.

Микросхема выполнена в 16-контакном корпусе (рис.1). В качестве питающего напряжения используется +5В, вырабатываемое дежурным источником питания (+5v _ SB). Применение LPG 899 позволяет значительно упростить схемотехнику блока питания, т.к. микросхема представляет собой интегральное исполнение четырех основных модулей управляющей части блока питания, а именно:

ШИМ-контроллера;

Цепей контроля выходных напряжений:

Схемы формирования сигнала Power Good;

Схемы контроля сигнала PS _ ON и удаленного запуска блока питания.

Функциональная схема ШИМ-контроллера LPG 899 представлена на рис.2.

Описание контактов ШИМ контроллера и его основные особенности функционирования

приводятся в табл.1.




Наименов.

Вход выход

Описание

1

V33

вход

Вход контроля напряжения канала +З.ЗВ. Через контакт отслеживается и превышение напряжения в канале, и снижение напряжения (что соответствует короткому замыканию в нагрузке канала). Контакт напрямую соединен с каналом +З.ЗВ. И превышение напряжения, и короткое замыкание приводят к блокировке выходных импульсов микросхемы. Входной импеданс контакта составляет 47 кОм.

2

V5

вход

Вход контроля напряжения канала +5В. Через контакт отслеживается и превышение напряжения в канале, и снижение напряжения (что соответствует короткому замыканию в нагрузке канала). Контакт напрямую соединен с каналом +5В. И превышение напряжения, и короткое замыкание приводят к блокировке выходных импульсов микросхемы. Входной импеданс контакта составляет 73 кОм.

3

V12

вход

Вход контроля напряжения канала +12В. Через контакт отслеживается и превышение напряжения в канале, и снижение напряжения (что соответствует короткому замыканию в нагрузке канала). Напряжение канала +12В подается на этот контакт через ограничивающий резистор. Как превышение напряжения, так и короткое замыкание в канале +12В приводят к блокировке выходных импульсов микросхемы. Входной импеданс контакта составляет 47 кОм.

4

РТ

вход

Вход защиты. Контакт может использоваться по-разному, в зависимости от практической схемы включения. Этот входной сигнал позволяет обеспечить защиту от экстремального превышения напряжения (если потенциал контакта становится выше 1.25В) или позволяет запретить функционирование защиты от короткого замыкания (если потенциал контакта становится, ниже 0.625В). Входной импеданс контакта составляет 28.6 кОм.

5

GND

питание

Общий для цепи питания и логической части микросхемы

6

СТ

-

Контакт для подключения частотозадающего конденсатора. В момент запитывания микросхемы, на данном контакте начинает генерироваться пилообразное напряжение, частота которого, определяется емкостью подключенного конденсатора.

7

С1

выход

Выход микросхемы. На контакте генерируются импульсы с изменяющейся длительностью. Импульсы данного контакта находятся в противофазе импульсам на конт.8.

8

С2

выход

Выход микросхемы. На контакте генерируются импульсы с изменяющейся длительностью. Импульсы данного контакта находятся в противофазе импульсам на конт.7.

9

REM

вход

Вход сигнала удаленного управления PS_ON. Установка низкого уровня на данном контакте приводит к запуску микросхемы, и началу генерации импульсов на конт.7 и конт.8.

10

TPG

...

Контакт для подключения конденсатора, которым задается временная задержка при форми­ровании сигнала Power Good.

11

PG

выход

Выходной сигнал Power Good - PG (питание в норме). Установка высокого уровня на этом контакте означает, что все выходные напряжения блока питания находятся в допустимом диапазоне значений.

12

DET

вход

Вход детектора, управляющего сигналом Power Good. Этот контакт может, например, использоваться для упреждающего сброса сигнала PG в низкий уровень при пропадании первичной сети.

13

VCC

питание

Вход питающего напряжения +5В

14

OPOUT

выход

Выход внутреннего усилителя ошибки.

15

OPNEGIN

вход

Инвертирующий вход усилителя ошибки. Этот внутренний усилитель ошибки осуществляет сравнение сигнала OPNEGIN с сигналом VADJ на конт.16. Внутренне этот контакт смешен на величину 2.45В источником опорного напряжения. Этот контакт также используется для подключения внешней компенсирующей цепи, позволяющей управлять частотной характеристикой замкнутой петли обратной связи усилителя.

16

VADJ

вход

Неинвертируюший вход внутреннего усилителя ошибки. Наиболее типовым использованием контакта является контроль комбинированного сигнала обратной связи каналов +5В и +12В. Изменение потенциала этого контакта приводит к пропорциональному изменению длительности выходных импульсов микросхемы, т.е. через этот контакт и осуществляется стабилизация выходных напряжений блока питания.

Делаем зарядное устройство для 12В свинцово-кислотных аккумуляторов из компьютерного БП формата ATX. часть 4-я


Вариант 5.

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.
Вот он, собственной персоной:


Фото 18


Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но… для нас - несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах. Основная сложность, в отличие от LPG-899, была в том, что на вход контроля напряжения 12В нужно было подать напряжение большее чем питание ШИМ. Можно было конечно взять напряжение с выхода, резистор + стабилитрон, но как то не хотелось. Нужное мне напряжение оказалось на втором выходе дежурки: 15В. Оно использовалось для питания каскада транзисторов раскачки. Его я и решил задействовать для обмана входов контроля положительных напряжений ШИМ. С входом контроля отрицательных напряжений, как ни странно, всё оказалось проще. Согласно документации там был внутренний источник тока, и контролировалось напряжение на этом входе. То есть банальный закон старика Ома, дал нам исчерпывающий ответ.
В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:



Рис 7.


Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:




Фото 19 и 20.


А это внутренности блока в сборе и внешний вид:




Фото 21 и 22.


Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.
В целом это немного упрощённый вариант 4. Разница заключается в следующем:
В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки (я уже писал об этом вначале). Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
Регулировка оборотов вентилятора тоже была упрощена.
А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухразрядный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они - мерцают. В остальном - всё нормально.
Индикация выглядит так:




Фото 23 и 24.


Видно не важно, но фотошопом редактировать не стал. Если присмотреться отличия всё-таки видно.
На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.
Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.
Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.
Да, чуть не забыл. Резистор R30 устанавливать именно так - совсем не обязательно. Просто, у меня никак не выходило подобрать номинал в параллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.

По другим ШИМ наработок пока нет, не попадались такие БП.
Пока работы идут в сторону уменьшения телодвижений при переделке в простых вариантах и разработки новых примочек.

Регулируемый блок питания из блока питания компьютера ATX

Если у Вас есть ненужный блок питания от компьютера ATX, то его можно легко превратить в лабораторный импульсный регулируемый блок питания, с регулировкой не только напряжения, но и тока, а это значит, что его можно использовать, например, для зарядки или восстановления аккумуляторов .

Блок питания имеет следующие параметры:

  • Напряжение - регулируемое, от 1 до 24В
  • Ток - регулируемый, от 0 до 10А
Возможны и другие пределы регулировки, по Вашей необходимости.

Для переделки подойдёт любой блок питания ATX, собранный на ШИМ-контроллере TL494. Часто в блоках питания применяется аналог этой микросхемы - KA7500.


Схемы большинства блоков питания похожи, и даже если Вы не смогли найти схему конкретно Вашего - ничего страшного. Первостепенная задача - выпаять из платы вторичные цепи после силового трансформатора, а также цепи, управляющие работой микросхемы TL494. На схеме ниже эти участки подсвечены красным. Перед выпаиванием пометьте выводы вторичной обмотки силового трансформатора по шине 12 вольт. Они нам понадобятся.


Нажмите на схему для увеличения
При этом на плате освободится много места. Печатные дорожки также можно удалить, проведя по ним нагретым паяльником. Некоторые печатные дорожки, идущие от выводов микросхемы, которые мы задействуем в дальнейшем, можно оставить для удобства и припаиваться к ним.


Теперь необходимо собрать новые выходные цепи и цепи регулировки тока и напряжения. К помеченным ранее обмоткам трансформатора шины 12 вольт необходимо припаять сборку двух диодов Шоттки с общим катодом. Сборку можно взять с шины +5В, обычно она имеет следующие параметры: напряжение - 30В, ток - 20А. Диоды Шоттки имеют очень малое падение напряжения, что в данном случае немаловажно. При данном типе выпрямителя можно питать большинство нагрузок.

Если же вам необходим большой ток на максимальном напряжении, данного варианта недостаточно. В этом случае необходимо убрать среднюю точку трансформатора, а выпрямитель сделать из четырёх диодов по классической схеме.

Затем необходимо намотать дроссель. Для этого необходимо взять выпаянный дроссель групповой стабилизации и смотать с него все обмотки. Сердечник дросселя имеет жёлтый цвет, одна сторона с торца покрашена белым. На это кольцо необходимо намотать 20 витков двемя проводами диаметром 1мм впараллель. Если такой толстой проволоки нет, то можно соединить вместе несколько жил более тонкой проволоки и намотать ими параллельно. При такой намотке все выводы на обоих концах обмотки необходимо залудить и соединить. Дроссель с такими параметрами обеспечит ток около 3А. Если нужен больший ток, то дроссель следует намотать десятью параллельными проводами диаметром 0,5мм.


После этого можно приступать к сборке той части схемы, которая отвечает за регулировки. Авторство этого метода принадлежит пользователю DWD, ссылка на тему с обсуждением:

http://pro-radio.ru/power/849/

Регулировка работает очень просто. Рассмотрим цепь регулировки напряжения. На вход компаратора (вывод 1) микросхемы TL494 подключен делитель напряжения на двух резисторах. Напряжение на их средней точке должно быть равно приблизительно 4.95 вольтам. Если Вы хотите изменить верхний предел регулировки напряжения блока питания, необходимо пересчитать именно этот делитель. Второй вход компаратора (вывод 2) подключен к средней точке переменного резистора, таким образом здесь также получается делитель напряжения. Если напряжение на выводе 1 компаратора будет меньше напряжения на выводе 2, то микросхема будет увеличивать ширину импульсов, пока напряжения не уравняются. Таким образом и осуществляется регулировка выходного напряжения блока питания.

Регулировка тока работает аналогично, только здесь для контроля протекающего в нагрузке тока используется падение напряжения на шунте Rш. В качестве шунта может быть использован практически любой шунт сопротивлением 0.01-0.05 Ом, например - участок токопроводящей дорожки, шунт от миллиамперметра или несколько SMD-резисторов. Верхний предел регулировки задаётся подстроечным резистором сопротивлением 1кОм. Если подстройка верхнего предела не нужна, то этот резистор следует заменить постоянным сопротивлением 270 Ом, что обеспечит регулировку до 10А.

Фото блока питания приведено ниже. На передней панели расположен экран ампервольтметра, под которым находятся ручки регуляторов напряжения и тока. Выходные клеммы выполнены из гнёзд RCA, приклееных изнутри эпоксидкой. К таким клеммам очень удобно цеплять зажимы типа крокодил. Большой жёлтый светодиод является индикатором включения блока питания, которое осуществляется большим красным переключателем.


В виду того, что корпус для блока питания выбран очень компактный (16*12см), монтаж получился плотный с обилием проводов. В будущем провода можно собрать в жгуты.


Для охлаждения блока питания применён термостат на микросхеме К157УД1, который охлаждает сборку выпрямительных диодов Шоттки и включается по мере надобности автоматически, затем выключается. О его конструкции будет рассказано отдельно.

Рассказать в:

Введение.

Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?

Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.

Вариант 1.

Итак: начали.

Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!

Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.

По пунктам:

Стадия разрушения на этом окончена, пора переходить к созиданию.


По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.

VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.

Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.

А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там - около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.

Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:


В итоге, что мы имеем?

Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.

Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:


Вариант 2.

Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).

Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:

План действий:

Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.

Вот плата в полном сборе:

Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.

Вариант 3.

Итак: наша следующая «жертва» - БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит - с него мы возьмем больше, например 10А.

Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.

Повторим в точности пункты 1 и 2 из второго варианта.

Канал 5В, в данном случае, я демонтировал полностью.

Чтобы не пугать вентилятор напряжением в 14,4В - собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.

С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь - иное.


Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо .

Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.

Вот этот вариант в готовом виде:

Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.

Вот готовая продукция:

Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?

Тогда позвольте представить:

Вариант 4.

За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).

Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.

Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:

А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.

То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.

Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.

  • Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
  • Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
  • Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
  • Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
  • Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
  • При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).

Теперь, кто за что отвечает:

  • R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
  • R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
  • R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
  • R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
  • VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
  • Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
  • И наконец, самое важное - компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
  • Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
  • Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.

Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.

Вот фото устройства в собранном виде без корпуса и в корпусе:

Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.

Вариант 5.

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.

Вот он, собственной персоной:

Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но… для нас - несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.

В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:

Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:

А это внутренности блока в сборе и внешний вид:

Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.

В целом это немного упрощённый вариант 4. Разница заключается в следующем:

  • В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
  • Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
  • Регулировка оборотов вентилятора тоже была упрощена.

А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они - мерцают. В остальном - всё нормально.

Индикация выглядит так:

На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.

Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.

Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.

Да, чуть не забыл. Резистор R30 устанавливать именно так - совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: