В чем различие озу и пзу. Постоянные запоминающие устройства. Основные характеристики, область применения. По типу исполнения

Доброго времени суток.

Если вы хотите заполнить пробел в знаниях относительно того, что такого ПЗУ, то попали по адресу. В нашем блоге вы сможете прочитать об этом емкую информацию на языке, доступном для простого пользователя.


Расшифровка и объяснение

Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится - память только для чтения.

Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?

  • Во-первых, на ней хранятся неизменяемые данные, заложенные разработчиком при изготовлении техники, то есть те, без которых ее работа невозможна.
  • Во-вторых, термин «энергонезависимый» указывает на то, что при перезагрузке системы данные с нее никуда не деваются, в отличие от того, как это происходит с оперативной памятью.

Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.

Примеры

Постоянная память в компьютере - это определенное место на материнской плате, в котором хранятся:

  • Тестовые утилиты, проверяющие правильность работы аппаратной части при каждом запуске ПК.
  • Драйвера управления главными периферийными девайсами (клавиатурой, монитором, дисководом). В свою очередь, те слоты на материнской плате, в функции которых не входит включение компьютера, не хранят свои утилиты в ROM. Ведь место ограничено.
  • Прогу начальной загрузки (BIOS), которая при включении компа запускает загрузчик операционной системы. Хотя нынешний биос может включать ПК не только с оптических и магнитных дисков, но и с USB-накопителей.

В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.

В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.

Физическое исполнение

Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:

  • Физически представляет собой микросхему со считывающим кристаллом, если входит в комплект компьютера, к примеру. Но бывают и самостоятельные массивы данных (компакт-диск, грампластинка, штрих-код и т. д.).
  • ПЗУ состоит из двух частей «А» и «Э». Первая - диодно-трансформаторная матрица, прошиваемая при помощи адресных проводов. Служит для хранения программ. Вторая предназначена для их выдачи.
  • Схематически состоит из нескольких одноразрядных ячеек. При записи определенного бита данных выполняется запайка к корпусу (ноль) или к источнику питания (единица). В современных устройствах схемы соединяются параллельно для увеличения разрядности ячеек.
  • Объем памяти варьируется от нескольких килобайт до терабайт, в зависимости от того, к какому устройству она применена.

Виды

Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:

  • Первая буква добавляет слово «programmable» (программируемое). Это значит, что пользователь может один раз самостоятельно прошить устройство.

  • Еще две буквы впереди скрывают под собой формулировку «electrically erasable» (электрически стираемое). Такие ПЗУ можно перезаписывать сколько угодно. К этому типу относится флеш-память.

В принципе это всё, что я хотел сегодня до Вас донести.

Буду рад, если вы подпишетесь на обновления и будете заходить чаще.

Дата последнего обновления файла 23.10.2009

Постоянные запоминающие устройства (ПЗУ)

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в , и , таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory — память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 1.


Рисунок 1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 2.


Рисунок 2. Обозначение постоянного запоминающего устройства на принципиальных схемах

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.


Рисунок 3. Схема многоразрядного ПЗУ (ROM)

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы — металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ . Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше — это использование кроме мультиплексора еще и . Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы , необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:



Рисунок 4. Схема масочного постоянного запоминающего устройства (ROM)

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведён при обсуждении ). Чтение микросхемы производится сигналом RD.


Рисунок 5. масочного ПЗУ (ROM) на принципиальных схемах

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах — программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке 6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.


Рисунок 6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:


Рисунок 7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.

Описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие — вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.



Рисунок 8. Внешний вид стираемого постоянного запоминающего устройства (EPROM)

При облучении микросхемы РПЗУ, изолирующие свойства оксида кремния теряются, накопленный заряд из плавающего затвора стекает в объем полупроводника, и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы РПЗУ колеблется в пределах 10 ... 30 минут.

Постоянная память (Постоянное запоминающее устройство - ПЗУ)

(Read Only Memory - ROM)

Постоянная память (ПЗУ, англ.ROM, Read Only Memory - память только для чтения) - энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом «зашивается» в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, внешней памятью, программы запуска и остановки компьютера, программы тестирования устройств.

Важнейшая микросхема ПЗУ - модуль BIOS (Basic Input/Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

Роль BIOS двоякая - с одной стороны - это неотъемлемый элемент аппаратуры, а с другой стороны - важный модуль любой операционной системы.

Итак, ПЗУ постоянно хранит информацию, которая записывается туда при изготовлении компьютера.

! Энергонезависимая память . При отключении питания содержимое ПЗУ не стирается.

В ПЗУ находятся:

  1. тестовые программы, проверяющие при каждом включении компьютера правильность работы устройст;
  2. программы управления основными периферийными устройствами (дисководом, монитором, клавиатурой);
  3. программа начальной загрузки, которая осуществляет поиск загрузчика операционной системы на внешнем носителе. Современные BIOS позволяют загружать операционную систему не только с магнитных и оптических дисков, но и с USB флэш-дисков.

Оперативная память (RAM – random access memory, ОЗУ) – устройство, предназначенное для хранения обрабатываемой информации (данных) и программ, управляющих процессом обработки информации. Конструктивно представляет собой набор микросхем, размещенных на одной небольшой плате (модуль, планка). Модуль (модули) оперативной памяти вставляется в соответствующий разъем материнской платы, позволяя таким образом связываться с другими устройствами ПК.

Для того чтобы какая-либо программа начала свое выполнение, она должна быть загружена в оперативную память. Оперативная память является энергозависимой, т.е. хранит информацию, пока компьютер включен (подано питание на модуль оперативной памяти). В оперативную память программа и данные для ее работы попадают из других устройств, загружаются из внешней памяти, энергонезависимых устройств памяти (жесткий диск, компакт-диск и т.д.). Таким образом, загрузить программу означает прочесть ее из файла, находящегося на одном из устройств внешней памяти, и прочитанную копию разместить в оперативную память, после этого микропроцессор начнет ее выполнение.

Оперативная память хранит загруженную, выполняющуюся сей момент программу и данные, которые с ее помощью обрабатываются. Если после обработки предполагается дальнейшее использование данных (это может быть и текстовой документ, и графическое изображение, и табличные данные, и звук), то копию этого документа из оперативной памяти можно записать на одном из устройств внешней памяти (например, на жестком диске), создав на жестком диске файл, хранящий документ.

Как технически осуществить процесс загрузки нужной программы в оперативную память? Для этого нужна программа-посредник, посредник между “железом” и человеком. Такой программой является операционная система.

Операционная система (ОС) тоже должна быть загружена в оперативную память, но ОС загружается автоматически при включении компьютера (обычно с жесткого диска, но не обязательно с него). После ее загрузки можно использовать инструменты, предназначенные для загрузки других программ (например, в MS Windows – ярлыки программ или программа для работы с файлами Проводник).

Основными характеристиками памяти являются объем, время доступа и плотность записи информации. Объем памяти определяется максимальным количеством информации, которая может быть помещена в эту память, и выражается в килобайтах, мегабайтах, гигабайтах. Время доступа к памяти (секунды) представляет собой минимальное время, достаточное для размещения в памяти единицы информации. Плотность записи информации (бит/см 2) представляет собой количество информации, записанной на единице поверхности носителя. Важнейшей характеристикой компьютера в целом является его производительность, т.е. возможность обрабатывать большие объемы информации. Производительность ПК во многом определяется быстродействием процессора, а также объемом оперативной памяти и скоростью доступа к ней.

Оперативная память изготавливается в виде небольших печатных плат с рядами контактов, на которых размещаются интегральные схемы памяти (модули памяти). Модули памяти различаются по размеру и количеству контактов (SIMM или DIMM), по быстродействию, по объему.

Важнейшей характеристикой модулей оперативной памяти является быстродействие – частота, с которой считывается или записывается информация в ячейки памяти. Современные модули памяти имеют частоту 133 МГц и выше.

Оперативная память состоит из огромного количества ячеек (десятки миллионов), в каждой из которых хранится определенная информация. От объема оперативной памяти зависит, сможет ли компьютер работать с той или иной программой. При недостаточном количестве памяти программы либо совсем не будут работать, либо будут работать медленно. Типичный современный компьютер имеет 256 или 512 Мб оперативной памяти.

Оперативная память энергозависима – при выключении электропитания информация, помещенная в оперативную память, исчезает безвозвратно (если она не была сохранена на какой-либо носитель информации).

Конструктивно элементы памяти выполнены в виде модулей, так что при желании можно сравнительно просто заменить их или установить дополнительные и тем самым изменить объем общей оперативной памяти компьютера. Емкость модулей памяти кратна степени числа 2: 128, 256, 512, 1 024 Mb.

Кэш-память

Кэш (англ. cache), или сверхоперативная память - очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью.

Кэш-памятью управляет специальное устройство - контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания", так и "промахи". В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.

Кэш-память реализуется на микросхемах статической памяти SRAM (Static RAM), более быстродействующих, дорогих и малоёмких, чем DRAM (SDRAM). Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня размером 8, 16 или 32 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью 256, 512 Кбайт и выше.

Энергонезависимая память (CMOS-память, Complementary Metal-Oxid-Semicondactor)

К устройствам специальной памяти относятся постоянная память (ROM), перепрограммируемая постоянная память (Flash Memory), память CMOS RAM, питаемая от батарейки, видеопамять и некоторые другие виды памяти.

Различные параметры конфигурации компьютера, например количество и тип дисковых накопителей, тип видеоадаптера, наличие сопроцессора и некоторые другие данные, хранятся в так называемой CMOS-памяти. Микросхема CMOS-памяти также содержит обыкновенные электронные часы. Благодаря ним в любой момент можно узнать текущую дату и время. Чтобы при отключении питания компьютера содержимое CMOS-памяти не стиралось, и часы продолжали отсчитывать время, микросхема CMOS-памяти питается от специальной маленькой батарейки или аккумулятора, которые также находятся на системной плате.

Постоянная память (ПЗУ , англ. ROM, Read Only Memory - память только для чтения) - энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом "зашивается" в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.

ПЗУ - постоянное запоминающее устройство (BIOS - Basic Input/Output System)

Видеопамять (VRAM) - разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам - процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.


Похожая информация.


Любая электроника представляет собой сложные устройства, принцип функционирования которых понятен далеко не каждому обывателю. Что такое ПЗУ и для чего необходимо данное устройство? Большинство пользователей сегодня не могут ответить на этот вопрос. Давайте попробуем исправить эту ситуацию.

Что собой представляет ПЗУ?

Чем являются ПЗУ и где они могут использоваться. Постоянные запоминающие устройства это так называемая энергонезависимая память. Чисто технически данные устройства реализованы в форме микросхем. Одновременно мы узнали, как расшифровывается аббревиатура ПЗУ. Такие микросхемы предназначены для хранения введенной пользователем информации, а также установленных программ. В ПЗУ можно найти все от документов до картинок. Информация на данной микросхеме хранится на протяжении нескольких месяцев или даже лет.

В зависимости от используемого устройства объемы памяти могут меняться от нескольких килобайт на самых простых устройствах, которые имеют всего один кристалл кремния, до терабайтов. Чем больше объем постоянного запоминающегося устройства, тем больше объектов может на нем храниться. Объем микросхемы прямо пропорционален количеству данных. Если попробовать более емко ответить на вопрос, что представляет собой ПЗУ, то можно сказать следующее: это хранилище информации, которое не зависит от постоянного напряжения.

Использование жестких дисков в качестве ПЗУ

Итак, мы уже дали ответ на вопрос, что представляет собой ПЗУ. Теперь поговорим о том, какими могут быть ПЗУ. Основное запоминающее устройство в любом компьютере — это жесткий диск. Сегодня они есть в каждом компьютере. Данный элемент используется благодаря широким возможностям накопления данных. При этом также существует ряд ПЗУ, которые используют в своем устройстве мультиплексоры. Это особые микроконтроллеры, начальные загрузчики и другие электронные механизмы. При более детальном рассмотрении, нужно не только понимать значение аббревиатуры ПЗУ. Чтобы вникнуть в тему, нужна расшифровка и других терминов.

Дополнение и расширение возможностей ПЗУ за счет использования флэш-технологий

Если пользователю не хватает стандартного объема памяти, то можно попробовать воспользоваться расширением возможностей в сфере хранения информации, предоставленных ПЗУ. Это осуществляется за счет использования современных технологий, которые реализованы в USB-накопителях и картах памяти. В основе данных технологий лежит принцип многоразового использования. Если говорить проще, то информацию на таких носителях можно затирать и снова записывать. Делать подобную операцию можно десятки и сотни тысяч раз.

Из чего состоит ПЗУ

В состав ПЗУ входит две части, которые обозначают как ПЗУ-А и ПЗУ-Э. ПЗУ-А используется для хранения программ, а ПЗУ-Э для выдачи программ. ПЗУ типа А представляет собой диодно-трансформаторную матрицу, которая прошивается при помощи адресных проводов. Данный раздел ПЗУ выполняет основную функцию. Начинка будет зависеть от материала, который использовался при изготовлении ПЗУ. Для этого могут использоваться магнитные ленты, магнитные диски, перфокарты, барабаны, ферритовые наконечники, диэлектрики с их свойством накопления электростатических зарядов.

ПЗУ: схематические строение

Данный объект электроники обычно изображается в виде устройства, напоминающее соединение некоторого количества одноразрядных ячеек. Несмотря на потенциальную сложность микросхема ПЗУ по размеру очень мала. При запоминании определенного бита информации производится запайка к корпусу (запись нуля) или к источнику питания (запись единицы). Чтобы увеличить разрядность ячеек памяти, в постоянных запоминающих устройствах схемы могут соединяться параллельно. Именно так и поступают производители с целью получения современного продукта. Ведь при использовании ПЗУ с высокими техническими характеристиками устройство будет конкурентноспособно на рынке.

Объем памяти, используемый в различных единицах техники

Объем памяти может зависеть от типа и предназначения ПЗУ. В простой бытовой технике вроде холодильников или стиральных машин будет вполне достаточно установленных микроконтроллеров. Что-то более сложное устанавливается в редких случаях. Нет смысла использовать здесь больший объем ПЗУ. Количество электроники довольно невелико. К тому же от техники не требуется выполнять сложные вычисления. Для современных телевизоров может потребоваться уже что-то более сложное. Вершиной сложности схем ПЗУ является вычислительная техника вроде серверов и персональных компьютеров. В такой технике ПЗУ вмещают в себя от нескольких гигабайт до сотен терабайт информации.

Масочное ПЗУ

Если запись осуществляется, когда запись ведется при помощи процесса металлизации и используется маска, то такое ПЗУ будет называться масочным. В них адреса ячеек памяти подаются на десять выводов. Конкретная микросхема выбирается при помощи специального сигнала CS. ПЗУ данного вида программируются на заводах. Поэтому изготавливать их в средних и мелких объемах неудобно и невыгодно. Однако при крупносерийном производстве такие устройства будут наиболее дешевыми из ПЗУ.

Это и обеспечило популярность данного типа устройств. С точки зрения схемотехнического решения такие ПЗУ отличаются от общей массы тем, что соединения в запоминающей матрице заменены на плавкие перемычки, которые изготавливаются из поликристаллического кремния. На стадии производства создаются все перемычки. Компьютер считает, что везде записаны логические единицы. Однако во время подготовительного программирования подается повышенной напряжение.

При помощи него оставляют логические единицы. Перемычки при подачи низких напряжений испаряются. Компьютер считает, что там записан логический нуль. Такой же принцип используется и в программируемых постоянных запоминающих устройствах. Программируемые ПЗУ или ППЗУ оказались довольно удобны с точки зрения технологического изготовления. К ним можно прибегать как в средне- так и в мелкосерийном производстве. Однако у этих устройств имеются и свои ограничения. Записать программу можно только один раз, после этого перемычки навсегда испаряются.

Из-за невозможности повторно использовать ПЗУ. При ошибочной записи его приходится выбрасывать. В результате стоимость всей произведенной аппаратуры увеличивается. Из-за несовершенства производственного цикла. Данная проблема довольно долго занимала умы разработчиков. В качестве выхода из данной ситуации было решено разработать ПЗУ, которое можно многократно программировать.

ПЗУ с электрическим или ультрафиолетовым стиранием

Такие устройства создаются на базе запоминающей матрицы, в которой ячейки памяти имеют особую структуру. Каждая ячейка здесь является МОП-транзистором, затвор в котором выполнен из поликристаллического кремния. Чем-то напоминает предыдущий вариант. Особенность данных ПЗУ состоит в том, что кремний в данном случае дополнительно окружается диэлектриком, который обладает изолирующими свойствами. В качестве диэлектрика используется диоксид кремния.

Здесь принцип действия базируется на содержании индукционного заряда. Он может храниться десятки лет. Здесь есть некоторые особенности со стиранием. Так, например, для ультрафиолетового ПЗУ устройства требуется попадание УФ-лучей извне, например, от ультрафиолетовой лампы. Конечно, с точки зрения удобства эксплуатации конструкция ПЗУ с электрическим стиранием будет оптимальным вариантом. В данном случае для активации нужно просто подать напряжение. Такой принцип электрического стирания успешно реализован в таких устройствах как флэш-накопители. Однако такая схема ПЗУ структурно ничем не отличается от обычного масочного ПЗУ за исключение строения ячейки.

Такие устройства иногда еще называют репрограммируемыми. Однако при всех преимуществах устройств такого типа, есть определенные границы скорости стирания информации. Обычно, для выполнения данной операции необходимо от 10 до 30 минут. Несмотря на возможность перезаписи, у репрограммируемых устройств есть ограничения по использованию. Электроника с УФ стиранием может пережить от 10 до 100 циклов перезаписи. После этого разрушающее влияние ультрафиолетового излучения станет таким ощутимым, что устройство перестанет функционировать.

Такие элементы могут использоваться для хранения программ BIOS в видео и звуковых картах для дополнительных портов. Относительно возможности перезаписи оптимальным будет принцип электрического стирания. Число перезаписей в таких устройствах составляет от 100 до 500 тысяч. Конечно, можно найти устройства, которые могут работать и больше, однако обычным пользователям такие сверхъестественные возможности совершенно ни к чему.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: