Простой регулируемый шим. ШИМ, он же PWM. Смотирте видео работы ШИМ регулятора

Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана .

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

  • обеспечивает режим плавного пуска преобразователя;
  • ограничивает амплитуду и скважность управляющих импульсов;
  • контролирует уровень входного напряжения;
  • защищает от короткого замыкания и превышения температуры силового ключа;
  • при необходимости переводит устройство в дежурный режим.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в . Он построен на базе микросхемы и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

Читайте так же

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания . Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на . Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Введение

Жидкокристаллические (ЖК-, LCD-) мониторы используются в самых разных условиях, поэтому желательно производить дисплеи, позволяющие изменять яркость и подходящие для работы как при свете, так и в темноте. Тогда пользователь сможет настроить экран на комфортный уровень яркости в зависимости от условий его работы и общего освещения.

В технических характеристиках дисплея производители обычно указывают его максимальную яркость, но важно принимать во внимание и более низкие значения яркости, на которых способен работать экран - ведь вы вряд ли захотите использовать его на максимальной яркости. Хотя в спецификациях часто фигурируют значения до 500 кд/м², вам наверняка потребуется использовать экран при яркости, несколько более комфортной для ваших глаз.

Напомним, что в каждом из наших обзоров на сайте tftcentral.co.uk мы проверяем полный диапазон регулирования яркости подсветки и соответствующие значения яркости. При калибровке мы также пытаемся установить яркость экрана на уровне 120 кд/м², который является рекомендуемым для ЖК-монитора при обычных условиях освещённости. Это помогает вам получить представление о том, как установить такой уровень яркости, при котором вы, скорее всего, захотите использовать его ежедневно.

Как в случае подсветки на люминесцентных лампах (CCFL), так и при светодиодной (LED-) подсветке, изменение яркости дисплея достигается уменьшением общей светоотдачи подсветки. В настоящее время для ослабления яркости подсветки наиболее часто применяется широтно-импульсная модуляция (ШИМ, Pulse Width Modulation, PWM), которая уже много лет используется в дисплеях настольных компьютеров и ноутбуков. Тем не менее, этот способ не лишён некоторых проблем, а с появлением дисплеев с высокими уровнями яркости и распространением светодиодной подсветки побочные эффекты ШИМ стали более заметными, чем раньше, и в некоторых случаях ШИМ может быть причиной быстрой утомляемости зрения у чувствительных к ней людей.

Цель этой статьи - не вселить в вас тревогу, а рассказать, как ШИМ работает, почему она используется, и как проверить дисплей, чтобы разглядеть эти эффекты более явно.

Что такое ШИМ?

Широтно-импульсная модуляция (ШИМ) - один из способов снижения воспринимаемой яркости в дисплеях, работающий путём быстрого циклического включения и выключения подсветки. Такая периодическая подача импульсов обычно происходит на постоянной частоте, а отношение длительности части каждого цикла, в течение которой подсветка включена, к общей длительности цикла называется коэффициентом заполнения (величина, обратная скважности). Изменением скважности достигается изменение общей светоотдачи подсветки. На зрительном уровне этот механизм работает благодаря тому, что чередование включённого и выключенного состояний подсветки происходит достаточно быстро, и пользователь не замечает мерцания, поскольку оно находится за пределами порога слияния мельканий (подробнее об этом ниже).

Ниже вы можете видеть графики светоотдачи подсветки на протяжении нескольких циклов с использованием «идеальной» ШИМ. Максимальная светоотдача подсветки в этом примере составляет 100 кд/м², а воспринимаемая яркость для коэффициентов заполнения 90%, 50% и 10% - 90, 50 и 10 кд/м² соответственно. Соотношение между минимальным и максимальным уровнями яркости в течение одного цикла называется глубиной модуляции и в данном случае составляет 100%. Обратите внимание, что на протяжении цикла в приведённом примере яркость подсветки максимальна.

Коэфф. заполнения 90% Коэфф. заполнения 50% Коэфф. заполнения 10%

Аналоговые (без использования ШИМ) графики, соответствующие воспринимаемым уровням яркости, представлены ниже. Здесь модуляция отсутствует.

Постоянная яркость 90% Постоянная яркость 50% Постоянная яркость 10%

Почему применяется ШИМ

Основными причинами применения ШИМ являются лёгкость её реализации, для которой от подсветки нужна лишь способность часто включаться и выключаться, а также обеспечиваемый с её помощью широкий диапазон возможных значений яркости.

Снизить яркость CCFL-подсветки можно путём снижения тока, протекающего через лампу, но лишь примерно вдвое ввиду их строгих требований к току и напряжению. Это делает ШИМ единственным простым способом достижения широкого диапазона регулирования яркости. CCFL-лампа обычно управляется инвертором, включающимся и выключающимся с частотой в десятки килогерц, что находится за пределами мерцания, заметного для человека. Однако ШИМ обычно работает на гораздо более низкой частоте, около 175 Гц, что может приводить к заметным дефектам изображения.

Яркость светодиодной подсветки можно регулировать в широких пределах путём изменения проходящего через них тока, правда в результате несколько изменяется цветовая температура. Этот аналоговый подход к изменения яркости светодиодов также нежелателен ввиду того, что вспомогательные цепи обязаны учитывать тепло, выделяемое светодиодами. Светодиоды во включённом состоянии нагреваются, что уменьшает их сопротивление и дополнительно увеличивает протекающий через них ток. Это может привести к быстрому росту тока в сверхъярких светодиодах и послужить причиной выхода их из строя. При использовании ШИМ ток можно принудительно удерживать на постоянном уровне в течение рабочего цикла, в результате чего цветовая температура всегда одинакова и перегрузок по току не возникает.

Побочные эффекты ШИМ

Несмотря на привлекательность ШИМ для производителей ввиду обозначенных выше причин, при неосторожном использовании она может также приводить к неприятным визуальным эффектам. Чтобы понять, что мы видим, нам необходимо рассмотреть мерцание настоящих дисплеев. Ниже показана видеозапись CCFL-подсветки, замедленная в 40 раз, благодаря чему мерцание можно увидеть более отчётливо. Графики изменения яркости RGB-компонентов в течение одного цикла показаны непосредственно под ней. Данный конкретный дисплей настроен на его минимальную яркость, при которой мерцание должно быть выражено наиболее ярко.

Как видно из видео и соответствующих графиков, в течение одного цикла общая яркость изменяется примерно в 4 раза. Что интересно, цвет подсветки тоже значительно изменяется в течение каждого цикла. Скорее всего, это связано с тем, что люминофоры в CCFL имеют различающееся время отклика, и в этом случае мы можем сделать вывод, что люминофор, задействованный при продуцировании синего света, может включаться и выключаться быстрее, чем для других цветов. Применение люминофоров также означает, что подсветка продолжит излучать свет в течение нескольких миллисекунд после отключения подсветки в конце рабочего цикла и обеспечивает более постоянный уровень свечения (меньшую модуляцию), чем имели бы место в противном случае. Обратите внимание, что усреднённый во времени цвет остаётся неизменным.

Мерцание светодиодной подсветки обычно гораздо заметнее, чем мерцание CCFL-подсветки при той же скважности, поскольку светодиоды способны включаться и выключаться гораздо быстрее и при этом не продолжают светиться после отключения питания. Это означает, что там, где CCFL-подсветка показывала достаточно плавное колебание яркости, светодиодная версия демонстрирует более резкие переходы между включённым и выключенным состояниями. Именно поэтому совсем недавно тему ШИМ стали поднимать в интернете и в обзорах на фоне появления всё большего и большего количества дисплеев со светодиодной подсветкой на основе белых светодиодов (W-LED). Как можно видеть ниже, существенного изменения цвета подсветки в течение рабочего цикла не происходит.

Особенно заметен эффект мерцания, когда глаза пользователя двигаются. При постоянном освещении без мерцания (например, при солнечном свете) изображение плавно размывается, и именно так мы обычно воспринимаем движение. Однако при сочетании с источником света, использующим ШИМ, человек может увидеть одновременно несколько раздельных остаточных изображений экрана, что может привести к снижению удобочитаемости и способности фиксировать взгляд на объектах. Из предыдущего анализа CCFL-подсветки мы знаем, что может также искажаться цвет, даже если исходное изображение чёрно-белое. Ниже показаны примеры того, как может выглядеть текст по мере горизонтального движения глаз при использовании подсветки разных типов.

Исходное изображение Без ШИМ ШИМ при CCFL-подсветке ШИМ при LED-подсветке

Важно помнить, что это обусловлено исключительно подсветкой, и дисплей как таковой отображает статичное изображение. Часто говорят, что человек не способен воспринимать более 24 кадров в секунду (fps), что не является правдой и в действительности лишь соответствует приблизительной частоте кадров, необходимой для восприятия непрерывного движения. На самом деле при движении глаз (например, при чтении) реально увидеть эффекты мерцания на нескольких сотнях герц. У разных людей способность замечать мерцание значительно различается и даже зависит от расположения пользователя относительно дисплея, поскольку периферическое зрение является наиболее чувствительным.

Так насколько же часто включается и выключается подсветка при использовании ШИМ? По-видимому, это зависит от типа используемой подсветки. Подсветка на основе люминесцентных ламп почти всегда переключается с частотой 175 Гц, или 175 раз в секунду. Частота мерцания светодиодной подсветки, по разным сведениям, составляет от 90 Гц до 420 Гц, и при более низких частотах мерцание гораздо заметнее. Может показаться, что частота слишком высокая, чтобы быть заметной, но не забывайте, что 175 Гц - это ненамного чаще, чем мерцание 100-120 Гц, характерное для ламп освещения, подключённых напрямую к электросети.

В действительности частота 100-120 Гц мерцания люминесцентных ламп была связана с такими симптомами, как перенапряжение глаз и головная боль у части людей. Именно поэтому были разработаны высокочастотные стабилизирующие цепи, обеспечивающие почти непрерывную светоотдачу. Использование ШИМ на низких частотах сводит на нет преимущества использования этих улучшенных стабилизирующих цепей в подсветке, поскольку источник почти непрерывного света в этом случае снова превращается в мерцающий. Дополнительно следует учитывать, что низкокачественные или бракованные стабилизаторы в подсветке на основе люминесцентных ламп могут издавать слышимый шум. Зачастую это происходит при использовании ШИМ, поскольку электроника в настоящее время имеет дело с дополнительной частотой, с которой изменяется энергопотребление.

Важно также понимать разницу между мерцанием дисплеев на основе электронно-лучевых трубок (ЭЛТ, CRT) и TFT-дисплеев с CCFL- и LED-подсветкой. В то время как ЭЛТ может мерцать на низкой частоте 60 Гц, лишь узкая полоса освещена в каждый отдельно взятый момент времени, поскольку луч электронной пушки движется сверху вниз. При использовании TFT-дисплеев с CCFL- и LED-подсветкой вся поверхность экрана светится одновременно, что означает гораздо большее количество света, излучённого за короткое время. В некоторых случаях это может быть более неприятно, чем мерцание ЭЛТ, особенно при высокой скважности.

Для некоторых людей мерцание как таковое в подсветке дисплеев может быть трудноуловимым и малозаметным, но для других - является весьма заметным в силу естественных различий в человеческом зрении. С ростом использования светодиодов высокой яркости, для управления яркостью приходится всё больше использовать высокую скважность ШИМ, что делает проблему мерцания более актуальной. Учитывая что пользователи ежедневно проводят многие часы, смотря на свои мониторы, не следует ли нам рассмотреть долгосрочные последствия как воспринимаемого, так и незаметного мерцания?

Ослабление побочных эффектов ШИМ

Если для вас ШИМ-мерцание подсветки неприятно или вы просто хотите проверить, станет ли легче читать, если мерцание уменьшить, я рекомендовал бы вам попробовать следующее. Установите яркость вашего монитора на максимум и отключите все механизмы автоматической подстройки яркости. Теперь уменьшите яркость до нормального уровня (обычно с помощью ползунка контрастности) с помощью цветокоррекции, доступной в драйверах вашей видеокарты, или с помощью устройства калибровки. Это уменьшит яркость и контрастность вашего монитора, при этом подсветка будет включена в течение максимально продолжительного времени на протяжении ШИМ-циклов. Хотя из-за уменьшенной контрастности этот способ в качестве долгосрочного решения многим не подойдёт, эта техника может помочь определить степень положительного влияния уменьшения использования ШИМ.

Гораздо лучшим методом, конечно, было бы приобрести дисплей, не использующий ШИМ для управления яркостью или хотя бы использующий гораздо более высокую частоту ШИМ. К сожалению, похоже, ни один из производителей пока не реализовал ШИМ, работающую на частотах, которые находились бы за пределами воспринимаемых зрительных дефектов (вероятно, значительно выше 500 Гц для CCFL и выше 2 КГц для светодиодов). Кроме того, в некоторых дисплеев, в которых применяется ШИМ, коэффициент заполнения не равен 100% даже на полной яркости, в результате чего они мерцают в любом случае. Возможно, в некоторых из доступных сейчас дисплеев со светодиодной подсветкой ШИМ не используется, но до тех пор, пока частоту подсветки и модуляцию не станут указывать в технических характеристиках, каждый конкретный дисплей необходимо проверять лично.

Проверка и анализ

Было бы здорово, если бы существовал простой способ измерения ШИМ-частоты подсветки, и, к счастью, для этого достаточно фотоаппарата с возможностью ручной настройки выдержки. Как именно использовать этот способ, описано далее.

Съёмка:

  1. Установите на мониторе настройки, которые вы хотите проверить.
  2. (Необязательно) Установите баланс белого на фотоаппарате при отображении на экране только белого цвета. Если это невозможно, установите баланс белого вручную примерно на уровне 6000 K.
  3. Выведите на монитор узкую белую вертикальную полосу на чёрном фоне (толщины 1-3 точки будет достаточно). Должно быть видно только это изображение.
  4. Установите выдержку на фотоаппарате в значение из промежутка от 1/2 до 1/25 секунды. Для получения достаточного для съёмки количества света вам может потребоваться установить ISO-чувствительность и диафрагму. Убедитесь, что полоса располагается на фокусном расстоянии (при необходимости зафиксируйте его).
  5. Удерживайте камеру на расстоянии примерно 60 см от монитора и перпендикулярно ему. Нажмите кнопку спуска затвора во время медленного горизонтального перемещения камеры относительно экрана (при движении сохраняйте их взаимно перпендикулярное положение). Вам может потребоваться поэкспериментировать с перемещением фотоаппарата на разных скоростях.
Обработка:
  1. Подстройте яркость полученного изображения так, чтобы был хорошо различим узор.
  2. Подсчитайте количество циклов, запечатлённых на изображении.
  3. Разделите это число на величину выдержки. Например, если вы используете выдержку 1/25 секунды и насчитали 7 циклов, количество циклов в секунду составит 25 * 7 = 175 Гц. Это частота мерцания подсветки.
Проверочное изображение Фотография Вырезанный полезный фрагмент

Смысл данной техники в том, что, перемещая фотоаппарат во время съёмки, мы превращаем временной эффект в пространственный. Единственным существенным источником света при съёмке является узка полоса на экране, которая попадает на светочувствительную матрицу в виде следующих друг за другом столбцов. Если подсветка мерцает, разные столбцы будут иметь разные значения яркости или цвета, определяемые подсветкой в конкретный момент съёмки.

Типичной проблемой при первых попытках использования этой техники является слишком тёмное изображение. Улучшить ситуацию в этом плане может использование большей диафрагмы фотоаппарата (более низкое значение f/число) или увеличение ISO-чувствительности. Выдержка на эскпозицию влияния не оказывает, поскольку мы используем её только для управления общей продолжительностью съёмки. Яркость изображения можно также подстроить путём изменения скорости перемещения фотоаппарата: более высокая скорость обеспечит более тёмное изображение при более высоком разрешении по времени, а следствием более низкой скорости будет более яркое изображение при более низком разрешении.

Другая встречающаяся проблема - неравные расстояния между отдельными полосами на результирующем изображении вследствие изменения скорости перемещения фотоаппарата во время съёмки. Для достижения постоянства скорости начинайте перемещение фотоаппарата за некоторое время до начала съёмки, а заканчивайте - через некоторое время после её окончания.

Изображение, выглядящее слишком ровно, может быть следствием расфокусированности. В некоторых случаях с этим можно справиться путём половинного нажатия кнопки спуска затвора для наведения фокуса и дальнейшего продолжения в обычном режиме.

В зависимости от конкретного монитора могут наблюдаться дополнительные эффекты. Подсветка на основе CCFL часто демонстрирует разные цвета в начале и конце каждого цикла, что означает, что используемые люминофоры реагируют с разной скоростью. Подсветка на основе светодиодов часто использует более высокую частоту, чем CCFL-подсветка, и, чтобы увидеть циклы, может потребоваться перемещать фотоаппарат быстрее. Тёмные полосы между циклами означают, что скважность ШИМ была увеличена в такой степени, что во время этой части цикла свет не излучается.

Dell 2007WFP (CCFL)

Яркость = 100 Яркость = 50 Яркость = 0

Используя выдержку 1/25 секунды, мы можем ясно увидеть 7 циклов, из чего следует, что подсветка мерцает на частоте 175 Гц. Даже на полной яркости есть небольшое мерцание, хотя оно, скорее всего, достаточно мало, чтобы быть незаметным. На половинной яркости появляется небольшое мерцание, а при достижении минимальной яркости появляется гораздо более заметное мерцание наряду с цветовым сдвигом.

NEC EA231WMi (CCFL)

Яркость = 100 Яркость = 50 Яркость = 0

На полной яркости видимое мерцание отсутствует. На половинной яркости становятся видны мерцание и цветовой сдвиг. При минимальной яркости наблюдаются более сильное мерцание и значительный цветовой сдвиг. При выдержке 1/25 секунды видно около 8 циклов, что соответствует частоте примерно 200 Гц. При более длительной выдержке получено более точное значение частоты - 210 Гц.

Samsung LN40B550 Television (CCFL)

Яркость = Max Яркость = Min

Отключить автоматическую подстройку яркости нет возможности, поэтому показаны максимальный и минимальный уровни яркости, которых можно легко достичь. На полной яркости видимое мерцание отсутствует. На минимальной яркости есть сильное мерцание и цветовой сдвиг, за счёт которого видно разделение на жёлтую и синюю составляющие. При выдержке 1/25 секунды видны лишь 6 циклов, из чего следует, что подсветка мерцает на частоте 150 Гц.

2009 Apple MacBook (LED)

Яркость = 100 Яркость = 50 Яркость = 0

При использовании выдержки 1/25 секунды видимые мерцание и цветовой сдвиг отсутствуют вне зависимости от яркости. Этот дисплей не использует ШИМ. Причиной бороздчатости является зашумлённость изображения.

2008 Apple MacBook Pro (LED)

Яркость = 100 Яркость = 50 Яркость = 0

При выдержке 1/25 секунды наблюдается небольшое мерцание на полной яркости. При яркости 50 и 0 используется очень высокая скважность, дающая сильное мерцание. В этой светодиодной подсветке используется более высокая частота - 420 Гц, но она всё же слишком низка, чтобы устранить эффект мерцания. Видимый цветовой сдвиг в течение циклов отсутствует.

Заключение

Как мы отметили вначале, эта статья написана не для того, чтобы отпугнуть людей от современных ЖК-дисплеев, а для того, чтобы помочь людям узнать о потенциальной проблеме, связанной с ШИМ. С учётом растущей популярности мониторов с подсветкой на основе белых светодиводов (W-LED) довольно вероятно появление большего количества жалоб пользователей по сравнению с более старыми дисплеями, и связано это с использованием ШИМ-метода и, в конечном итоге, с выбранным типом подсветки. Конечно, проблемы, к которым может привести использование ШИМ, заметны не каждому, и в действительности я ожидаю, что людей, которые никогда не испытают описанных симптомов, гораздо больше, чем тех, кто испытает. Для тех, кто страдает от побочных эффектов, включая головные боли и перенапряжение глаз, теперь есть хотя бы объяснение.

Учитывая, что такая технология, как ШИМ, используется давно и успешно, а также многие годы её использования в CCFL-дисплеях, я, откровенно говоря, сомневаюсь, что в ближайшее время в этом плане что-то изменится, даже при усиливающемся переходе к светодиодной подсветке. ШИМ по-прежнему является надёжным способом управления интенсивностью подсветки и, следовательно, предлагает возможности регулирования яркости, необходимые каждому пользователю.

Тем, кто беспокоится о побочных эффектах или имеет проблемы с предыдущими дисплеями, следует попробовать определить частоту ШИМ в их новом дисплее и, возможно, даже попробовать найти экран, в котором ШИМ для управления яркостью подсветки не используется вообще. К сожалению, нам ещё предстоить увидеть, как производители станут указывать какие-либо технические характеристики, касающиеся использование ШИМ, или её частоту при определённых уровнях яркости, поэтому сейчас об этом судить трудно.

Установка максимальной яркости экрана является одним из возможных методов, помогающих уменьшить побочные эффекты благодаря меньшей скважности. Это решение, конечно, не идеально, поскольку многие дисплеи имеют очень высокий заводской или максимальный уровень яркости, но это что-то, что может помочь. Управление яркостью на программном уровне или средствами драйвера видеокарты может помочь вернуть более комфортную яркость, но может привести к снижению контрастности.

ШИМ или в английском PWM (Pulse-Width Modulation) широтно-импульсная модуляция - способ используемый для контроля величины напряжения и тока. Принцип действия ШИМ состоит в изменении ширины импульса постоянной амплитуды при постоянной частоте.

Принципы ШИМ регулирования получили широкое распространение в импульсных преобразователях, в , яркостью свечения светодиодов и т.п.


Принцип действия ШИМ

Принцип действия состоит в изменении ширины импульса сигнала. При использовании способа широтно-импульсной модуляции, частота сигнала и амплитуда будут всегда постоянными. Важнейшим параметром сигнала ШИМ считают коэффициент заполнения, который можно вычислить по формуле.

где T = T ON + T OFF ; T ON - время высокого уровня; TOFF - время низкого уровня; T - период сигнала

Время высокого уровня и низкого уровня сигнала показано на рисунке выше. Остается добавить, то что U1- это состояния высокого уровня сигнала, то есть амплитуда.

Допустим у нас имеется ШИМ сигнал с заданным временным интервалом высокого и низкого уровня, смотри рисунок:

Подставив в формулу коэффициента заполнения ШИМ имеющиеся данные получим: 300/800=0,375. Для того чтобы узнать процентный коэффициент заполнения требуется результат умножить еще на 100%, т.е К ω% = 37,5% . Коэффициент заполнения это абстрактное значение.

Еще одним важнейшим параметром ШИМ считается также частота сигнала, которая определяется по известной формуле:

f=1/T=1/0,8=1,25 Гц

Благодаря возможности настройки ширины импульса можно регулировать среднее значение напряжения. На рисунке приведены различные коэффициенты заполнения при одной и той же частоте и амплитуды.

Для нахождения среднего значения напряжения ШИМ требуется коэффициент заполнения 37,5% и амплитуда 12 В:

U sr =К ω ×U 1 =0,375×12=4,5 Вольта

ШИМ позволяет понижать напряжение в интервале от U 1 и до 0. Это свойство часто используется в , или скорости вращения вала двигателя постоянного тока.

Сигнал ШИМ в электронике формируют с помощью микроконтроллера или какой-либо аналоговой схемой. Сигнал от них должен быть низкого уровня напряжения и очень малым током на выходе схемы. В случае если необходимо управление мощной нагрузкой, можно использовать типовую систему управления, с помощью биполярного или .

Сигнал ШИМ следует на базу транзистора через сопротивление R1, поэтому VT1 с изменением сигнала то открывается, то запирается. Если транзистор открыт, светодиод горит. А в момент времени, когда транзистор запирается, и светодиод тухнет. Если частота сигнала мала, то получим мигающий светодиод. При частоте от 50 Гц мигания уже не незаметны человеческим глазом, и мы видим эффект снижения яркости свечения. Чем ниже значение коэффициента заполнения, тем слабее будет гореть светодиод.

Этот же принцип и похожую электронную схему можно применить и в случае управления двигателем постоянного тока, но частота должна быть на порядок выше (15-20 кГц) по двум основным причинам.

При более низких частотах двигатель может издавать ужасный писк, вызывающий раздражение.
Ну и от частоты зависит стабильность работы двигателя. При управлении низкочастотным сигналом с низким коэффициентом заполнения, обороты будут нестабильны и он может даже полностью остановиться. Поэтому, с ростом частоты сигнала ШИМ, растет стабильность среднего выходного напряжения и снижаются пульсации напряжения. Однако, есть предел по частоте, т.к при больших частотах полупроводниковый прибор может не успеть полностью переключиться, и схема управления будет работать с ошибками. Кроме того высокая частота ШИМ сигнала также увеличивает потери на транзисторе. Управляя двигателем на высоких частотах желательно использовать быстродействующий полупроводник с низким сопротивлением проводимости.

Ниже рассмотрим реальную рабочую схему на операционном усилителе

Регулируя величину напряжения на неинвертирующем входе ОУ можно задаватьтребуюмую величину выходного напряжения. Поэтому, эту схему можно использовать в роли регулятора тока или напряжения или в роли регулятора оборотов двигателя постоянного тока.

Схема проста и надежна, состоит из доступных радиоэлементов и при правильной сборке сразу начнет работать. В роли управляющего ключа взят мощный полевой n- канальный транзистор.

Владимир Рентюк, Запорожье, Украина

В статье дается краткий обзор и анализ популярных схем, предназначенных для управления коллекторными двигателями постоянного тока, а также предлагаются оригинальные и малоизвестные схемотехнические решения

Электродвигатели являются, наверное, одним из самых массовых изделий электротехники. Как говорит нам всезнающая Википедия, электрический двигатель - электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую. Началом его истории можно считать открытие, которое сделал Майкл Фарадей в далеком 1821 году, установив возможность вращения проводника в магнитном поле. Но первый более-менее практический электродвигатель с вращающимся ротором ждал своего изобретения до 1834 года. Его во время работы в Кёнигсберге изобрел Мориц Герман фон Якоби, более известный у нас как Борис Семенович. Электродвигатели характеризуют два основных параметра - это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках. В настоящее время имеется достаточно много разновидностей электродвигателей, и поскольку, как заметил наш известный литературный персонаж Козьма Прутков, нельзя объять необъятное, остановимся на рассмотрении особенностей управления двигателями постоянного тока (далее электродвигателями).

К двигателям постоянного тока относятся два типа - это привычные для нас коллекторные двигатели и бесколлекторные (шаговые) двигатели. В первых переменное магнитное поле, обеспечивающее вращение вала двигателя, образуется обмотками ротора, которые запитываются через щеточный коммутатор - коллектор. Оно и взаимодействует с постоянным магнитным полем статора, вращая ротор. Для работы таких двигателей внешние коммутаторы не требуются, их роль выполняет коллектор. Статор может быть изготовлен как из системы постоянных магнитов, так и из электромагнитов. Во втором типе электродвигателей обмотки образуют неподвижную часть двигателя (статор), а ротор сделан из постоянных магнитов. Здесь переменное магнитное поле образуется путем коммутации обмоток статора, которая выполняется внешней управляющей схемой. Шаговые двигатели («stepper motor» в английском написании) значительно дороже коллекторных. Это достаточно сложные устройства со своими специфическими особенностями. Их полное описание требует отдельной публикации и выходит за рамки данной статьи. Для получения более полной информации по двигателям этого типа и их схемам управления можно обратиться, например, к .

Коллекторные двигатели (Рисунок 1) более дешевы и, как правило, не требуют сложных систем управления. Для их функционирования достаточно подачи напряжения питания (выпрямленного, постоянного!). Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя или в специальном режиме управления моментом вращения. Основных недостатков таких двигателей три - это малый момент на низких скоростях вращения (поэтому часто требуется редуктор, а это отражается на стоимости конструкции в целом), генерация высокого уровня электромагнитных и радиопомех (из-за скользящего контакта в коллекторе) и низкая надежность (точнее малый ресурс; причина в том же коллекторе). При использовании коллекторных двигателей необходимо учитывать, что ток потребления и скорость вращения их ротора зависят от нагрузки на валу. Коллекторные двигатели более универсальны и имеют более широкое распространение, особенно в недорогих устройствах, где определяющим фактором является цена.

Поскольку скорость вращения ротора коллекторного двигателя зависит, в первую очередь, от подаваемого на двигатель напряжения, то естественным является использование для его управления схем, имеющих возможность установки или регулировки выходного напряжения. Такими решениями, которые можно найти в Интернете, являются схемы на основе регулируемых стабилизаторов напряжения и, поскольку век дискретных стабилизаторов давно прошел, для этого целесообразно использовать недорогие интегральные компенсационные стабилизаторы, например, . Возможные варианты такой схемы представлены на Рисунке 2.

Схема примитивная, но кажется очень удачной и, главное, недорогой. Посмотрим на нее с точки зрения инженера. Во-первых, можно ли ограничить момент вращения или ток двигателя? Это решается установкой дополнительного резистора. На Рисунке 2 он обозначен как R LIM . Его расчет имеется в спецификации, но он ухудшает характеристику схемы как стабилизатора напряжения (об этом будет ниже). Во-вторых, какой из вариантов управления скоростью лучше? Вариант на Рисунке 2а дает удобную линейную характеристику регулирования, поэтому он и более популярен. Вариант на Рисунке 2б имеет нелинейную характеристику. Но в первом случае при нарушении контакта в переменном резисторе мы получаем максимальную скорость, а во втором - минимальную. Что выбрать - зависит от конкретного применения. Теперь рассмотрим один пример для двигателя с типовыми параметрами: рабочее напряжение 12 В; максимальный рабочий ток 1 А. ИМС LM317, в зависимости от суффиксов, имеет максимальный выходной ток от 0.5 А до 1.5 А (см. спецификацию ; имеются аналогичные ИМС и с бóльшим током) и развитую защиту (от перегрузки и перегрева). С этой точки зрения для нашей задачи она подходит идеально. Проблемы скрываются, как всегда, в мелочах. Если двигатель будет выведен на максимальную мощность, что для нашего применения весьма реально, то на ИМС, даже при минимально допустимой разнице между входным напряжением V IN и выходным V OUT , равной 3 В, будет рассеиваться мощность не менее

P = (V IN - V OUT)×I = 3×1 = 3 Вт.

Таким образом, нужен радиатор. Опять вопрос - на какую рассеиваемую мощность? На 3 Вт? А вот и нет. Если не полениться и рассчитать график нагрузки ИМС в зависимости от выходного напряжения (это легко выполнить в Excel), то мы получаем, что при наших условиях максимальная мощность на ИМС будет рассеиваться не при максимальном выходном напряжении регулятора, а при выходном напряжении равном 7.5 В (см. Рисунок 3), и она составит почти 5.0 Вт!

Как видим, получается что-то уже не дешевое, но очень громоздкое. Так что такой подход годится только для маломощных двигателей с рабочим током не более 0.25 А. В этом случае мощность на регулирующей ИМС будет на уровне 1.2 Вт, что уже будет приемлемо.

Выход из положения - использовать для управления метод широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. Его суть - подача на двигатель промодулированных по длительности однополярных прямоугольных импульсов. Согласно теории сигналов, в структуре такой последовательности имеется постоянная составляющая, пропорциональная отношению τ/T, где: τ - длительность импульса, а T - период последовательности. Вот она-то и управляет скоростью двигателя, который выделяет ее как интегратор в этой системе. Поскольку выходной каскад регулятора на основе ШИМ работает в ключевом режиме он, как правило, не нуждается в больших радиаторах для отвода тепла, даже при относительно больших мощностях двигателя, и КПД такого регулятора несравненно выше предыдущего. В ряде случаев можно использовать понижающие или повышающие DC/DC-преобразователи, но они имеют ряд ограничений, например, по глубине регулировки выходного напряжения и минимальной нагрузке. Поэтому, как правило, чаще встречаются иные решения. «Классическое» схемное решение такого регулятора представлено на Рисунке 4 . Оно использовано в качестве дросселя (регулятора) в профессиональной модели железной дороги.

На первом операционном усилителе собран генератор, на втором компаратор. На вход компаратора подается сигнал с конденсатора C1, а путем регулирования порога срабатывания формируется уже сигнал прямоугольной формы с нужным отношением τ/T (Рисунок 5).

Диапазон регулировки устанавливается подстроечными резисторами RV1 (быстрее) и RV3 (медленнее), а сама регулировка скорости осуществляется резистором RV2 (скорость). Обращаю внимание читателей, что в Интернете на русскоязычных форумах гуляет похожая схема с ошибками в номиналах делителя, задающего порог компаратора. Управление непосредственно двигателем осуществляется через ключ на мощном полевом транзисторе типа . Особенности этого транзистора типа MOSFET - большой рабочий ток (30 А постоянного, и до 120 А импульсного), сверхмалое сопротивление открытого канала (40 мОм) и, следовательно, минимальная мощность потерь в открытом состоянии.

На что нужно в первую очередь обращать внимание при использовании таких схем? Во-первых, это исполнение цепи управления. Здесь в схеме (Рисунок 4) есть небольшая недоработка. Если со временем возникнут проблемы с подвижным контактом переменного резистора, мы получим полный почти мгновенный разгон двигателя. Это может вывести из строя наше устройство. Какое противоядие? Установить добавочный достаточно высокоомный резистор, например, 300 кОм с вывода 5 ИМС на общий провод. В этом случае при отказе регулятора двигатель будет остановлен.

Еще одна проблема таких регуляторов - это выходной каскад или драйвер двигателя. В подобных схемах он может быть выполнен как на полевых транзисторах, так и на биполярных; последние несравненно дешевле. Но и в первом и во втором варианте необходимо учитывать некоторые важные моменты. Для управления полевым транзистором типа MOSFET нужно обеспечить заряд и разряд его входной емкости, а она может составлять тысячи пикофарад. Если не использовать последовательный с затвором резистор (R6 на Рисунке 4) или его номинал будет слишком мал, то на относительно высоких частотах управления операционный усилитель может выйти из строя. Если же использовать R6 большого номинала, то транзистор будет дольше находиться в активной зоне своей передаточной характеристики и, следовательно, имеем рост потерь и нагрев ключа.

Еще одно замечание к схеме на Рисунке 4. Использование дополнительного диода D2 лишено смысла, так как в структуре транзистора BUZ11 уже имеется свой внутренний защитный быстродействующий диод с лучшими характеристиками, чем предлагаемый. Диод D1 также явно лишний, транзистор BUZ11 допускает подачу напряжения затвор-исток ± 20 В, да и переполюсовка в цепи управления при однополярном питании, как и напряжение выше 12 В, невозможны.

Если использовать биполярный транзистор, то возникает проблема формирования достаточного по величине базового тока. Как известно, для насыщения ключа на биполярном транзисторе ток его базы должен быть, по крайней мере, не менее 0.06 от тока нагрузки. Понятно, что операционный усилитель такой ток может не обеспечить. С этой целью в аналогичном, по сути, регуляторе, который используется, например, в популярном мини-гравере PT-5201 компании , применен транзистор , представляющий собой схему Дарлингтона. Тут интересный момент. Эти мини-граверы иногда выходят из строя, но не из-за перегрева транзистора, как можно было бы предположить, а из-за перегрева ИМС (максимальная рабочая температура +70 °С) выходным транзистором (максимально допустимая температура +150 °С). В изделиях, которыми пользовался автор статьи, он был вплотную прижат к корпусу ИМС и посажен на клей, что недопустимо нагревало ИМС и почти блокировало теплоотвод. Если вам попалась такое исполнение, то лучше «отклеить» транзистор от ИМС и максимально отогнуть. За это know-how автор статьи был премирован компанией Pro’sKit набором инструментов. Как видите все нужно решать в комплексе - смотреть не только на схемотехнику, но и внимательно относится к конструкции регулятора в целом.

Есть еще несколько интересных схем более простых ШИМ-регуляторов. Например, две схемы на одиночном операционном усилителе с драйвером опубликованы в [

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: