Процесс парообразования в p – V диаграмме. Работа расширения и pv-диаграмма для изображения работы

I. Введение

Как известно, простейшие термодинамические системы описываются тремя параметрами: давлением P, объемом V и температурой T. Так как они связаны уравнением Менделеева-Клапейрона, то число независимых параметров уменьшается до двух и равновесные процессы, происходящие с системой, можно изображать графически в плоскостях PV, PT или VT.

Часто по ходу решения задачи необходимо перейти от графиков в одних осях к графикам в других. Подобные переходы являются прекрасными упражнениями, позволяющими глубже понять происходящие в системе процессы.

Если график задан в масштабированных осях с конкретными цифрами, то переход к другим осям не представляет никаких трудностей, так как из уравнения Менделеева-Клапейрона можно найти недостающие координаты для характерных точек графика, после чего легко построить график в любых осях.

Если же численных данных нет, то можно стоить графики из качественных соображений, основываясь на физике процессов. При этом получающиеся графики не вполне согласованы друг с другом: по имеющимся двум графикам со значениями P i , V i , T i для характерных точек невозможно построить правильный третий график, так как получающиеся при этом линии не будут линиями изопроцессов.

Мною разработан геометрический алгоритм построения согласованных графиков, основанный на связи между параметрами системы, вытекающей из уравнения Менделеева-Клапейрона, и графическим изображением изопроцессов. Почти всегда изопроцессы изображаются прямыми линиями, кроме изотермы в осях PV. Поэтому необходимо правильно изображать гиперболу, а вернее, находить точки, принадлежащие одной гиперболе. Я обнаружил, что это легко сделать с помощью линейки.

II. Построение гиперболы с помощью линейки.

Все точки гиперболы первого порядка обладают следующим свойством: площадь любого прямоугольника, одна вершина которого принадлежит гиперболе, вторая – началу координат, а остальные – координатным осям, постоянна. Отсюда следует, что если строить такие равновеликие прямоугольники, то соответствующие вершины будут принадлежать одной гиперболе.

Пусть имеется точка A(x 1 , y 1 ) (рис.1). Нужно найти координату x 2 точки B(x 2 , y 2 ), для которой известна координата y 2 и которая принадлежит той же гиперболе, что и точка A. По условию равновеликости площадей,

x 1 · y 1 = x 1 · y 2 => x 1 /y 2 = x 2 /y 1.

Последнее равенство похоже на соотношение сторон в подобных треугольниках: треугольник OA"A" подобен треугольнику OB"B". Отсюда видно, как найти точку B. Надо провести две прямые, параллельные оси абсцисс, через точки с ординатами y 1 и y 2 , затем опустить перпендикуляр из точки A на ось абсцисс, а затем провести прямую через точку O и точку A" - пересечение перпендикуляра и прямой с ординатой y 2 . Перпендикуляр из точки B" (пересечение прямой OA" и прямой с ординатой y 1 ) на ось абсцисс и дает координату x 2 . Находя подобным образом ряд точек, можем по ним построить гиперболу.

Можно поступить еще проще. Если провести через точку A две прямые (рис.2), параллельные координатным осям, то любая прямая, проходящая через начало координат, отсекает на них координаты точек гиперболы (на 1-й - абсциссы, а на 2-й – ординаты). Если эти прямые проходят в первой четверти, то получается одна ветвь гиперболы, а если во второй – то вторая ветвь гиперболы. В более общем случае прямые 1 и 2 проводятся параллельно абсциссам, а секущие прямые – через центр двух гипербол.

III. Алгоритм построения графиков.

Так как мы рассматриваем в основном графики, соответствующие последовательным изопроцессам, то нам достаточно находить недостающие координаты точек перехода от одного изопроцесса к другому. Если же мы имеем дело не с изопроцессами, то тем более надо уметь находить координаты любой точки.

Введем на осях P, V, T масштаб, то есть выберем произвольные отрезки OP 0 , OV 0 , OT 0 , которые будем считать единичными отрезками. Желательно выбирать их одинаковыми, так как в противном случае при возвращении к исходному графику через два построенных в других осях мы получим искажение. Преобразуем уравнение Менделеева-Клапейрона

в уравнение

Таким образом, мы просто изменили масштаб на оси T.

Рассмотрим процесс нахождения недостающих координат в случаях, когда заданы графики в осях PV, PT или VT. Для каждого случая мы рассмотрим две точки. У первой ордината больше выбранной единицы (точка A), у второй – меньше (т. A")

Оси PV (рис. 3а), PT (рис. 3б) и VT (рис. 3в).

Пусть имеются точки A и A" в плоскости PV. Необходимо найти для них координаты T". Из уравнения (2) следует, что значение T" геометрически равно значению объема при P = P 0 = 1. Поэтому надо провести изотермы через A и A" до пересечения с прямой P = P 0 . Тогда абсциссы этих точек дадут геометрические значения T" A и T" A" . Для точки A построение описано выше.

Для точки A" построение ведется в обратном порядке по сравнению с A, так как P A" < P 0 , а P A > P 0 . Проводим прямые, параллельные осям, через точку A". Проводим линию через начало координат и пересечение вертикали из точки A" с линией P = P 0 . Через точку пересечения этой линии с горизонталью из точки A" проводим вертикаль, пересечение которой с осью 0V даёт значение V B" , геометрически равное T A" в выбранном нами масштабе.

Из уравнения (2) следует, что V = T"/P. При P = P 0 = 1 получаем, что геометрически V = T". Проведем через A и A" изохоры. Тогда абсциссы точек пересечения их с прямой P = P 0 дадут нам геометрическое значение объема.

Из уравнения (2) следует, что P = T"/V. Поэтому, построение в осях VT проводится аналогично, только теперь надо проводить изобары через точки A и A" и пересечение искать с прямой V = V 0 .

Как видно, для нахождения недостающей координаты надо через интересующую нас точку провести линию того изопроцесса, чей неизменный параметр отсутствует на осях графика, до пересечения с прямой P = P 0 или V = V 0 . Тогда вторая координата точки пересечения даст нам геометрическое значение искомой координаты.

Выбор P 0 , V 0 и T 0 влияет на величину получающихся графиков. Из рис. 3а видно, что если P A > P 0 , то геометрическое значение T A больше геометрического значения V A , то есть графики в осях PT и VT получатся более растянутыми. Если P A < P 0 , то всё наоборот. Из рис. 3б и 3в видно, что если P A > P 0 (V A > V 0), то геометрическое значение V A (P A) получится меньше геометрического значения T A , то есть график в осях PV получается сжатым по оси V (P). Если же P A < P 0 , то всё наоборот. Исходя из этого, можно выбирать P 0 (V 0) таким образом, чтобы получающиеся графики укладывались в заранее определенные рамки. Это легко сделать, так как всегда известно, в какой точке исходного графика недостающий параметр имеет наибольшее значение. Следует провести через нее соответствующую изолинию и выбрать P 0 или V 0 так, чтобы точка пересечения прямой P = P 0 или V = V 0 имела абсциссу нужной нам величины.

Чтобы предложенный алгоритм работал, необходимо правильно строить исходный график в осях PV: конечные точки изотермы должны принадлежать одной гиперболе, что легко сделать, опираясь на алгоритм построения гиперболы.

Существует еще один класс графических задач – сравнение параметров, отсутствующих на осях графика для разных его точек. Для этого через эти точки проводятся соответствующие изолинии, что и позволяет сделать вывод, где соответствующий параметр больше.

До сих пор проблемы возникали для изотерм, так как не всегда было ясно, изотерма какой точки пойдет выше (рис. 4а ). Теперь подобных затруднений нет (рис. 4б ) и видно, что температура состояния в точке В выше, чем температура состояния в точке А.

Каждое из этих уравнений содержит два множителя. Один характеризует качество или напряженность энергии (ω2 − квадрат скорости, H – высота подъема груза, T – температура, p −давление), а второй – выражает количество или ёмкость тела по отношению к данной энергии (m масса тела, V удельный объем, S энтропия). Первый множитель является интенсивным фактором, а второй – экстенсивным. То есть энтропия представляет собой емкость термодинамической системы по отношению к тепловой напряженности.

Клаузиус дал формулировки первого и второго законов термодинамики.

    Энергия Вселенной постоянна.

    Энтропия Вселенной стремится к максимуму.

Таким образом, это должно привести к тепловой смерти Вселенной, когда температура выровняется. Но это противоречит, тому, что закон возрастания энтропии получен для изолированной системы.

TS – диаграмма.

На этой диаграмме по оси ординат откладывается температура, а по оси абсцисс – энтропия.

Равновесное состояние в TS − диаграмме изображаются точками с координатами, соответствующими значениям температуры и энтропии.

Обратимый термодинамический процесс изменения состояния рабочего тела от начального состояния 1 до конечного состояния 2 изображается на TS диаграмме непрерывной кривой, проходящей между этими точками.

Площадь abdc равна TdS = dq , т.е. выражает элементарное количество теплоты, получаемой или отдаваемой системой в обратимом процессе.

Площадь под кривой 1-2 равна

То есть площадь под кривой в TS диаграмме, представляет собой теплоту, подведенную к системе или отведенную от нее.

Поэтому TS диаграмму называют тепловой.

Проведем в произвольной точке M на кривой 1-2 касательную к этой кривой

Величина представляет собой истинную теплоемкость процесса.

Газовые процессы в TS − диаграмме.

    Изотермический процесс .

При изотермическом процессе T = const . Поэтому TS − диаграмме он изображается прямой линией, параллельной оси абсцисс.

С учетом того, что dT =0 , зависимости изменения энтропии идеального газа в изотермическом процессе примут вид

(уходит слагаемое в правой части)

Процесс 1-2 – это процесс, в котором энтропия увеличивается, а следовательно, к газу подводится теплота и газ совершает работу расширения, эквивалентную этой теплоте.

Процесс2-1− это процесс сжатия, в котором теплота, эквивалентная работе сжатия, отводится от газа и энтропия уменьшается

Площадь фигуры S 1 12 S 2 соответствует количеству теплоты q , сообщаемому газу, и одновременно работе l (изотермический процесс)

    Адиабатный процесс

В адиабатном процессе q =0 и dq =0, а следовательно dS =0.

Следовательно, в адиабатном процессе S = const и в TS − диаграмме адиабатный процесс изображается прямой линией, параллельной оси T .

Поскольку в адиабатном процессе S = const ,то адиабатные обратимые процессы называют также изоэнтропными.

При адиабатном сжатии температура рабочего тела повышается, а при расширении понижается. Поэтому процесс1-2 – это процесс сжатия, а процесс 2-1 – это расширение.

Из уравнения

(3)

При k = const получим

Для обратимого адиабатного процесса S 1 = S 2 = const , тогда из (*)

− уравнение адиабаты в координатах p и V .

    Изохорный процесс

Для изохорного процесса V = const , dV =0.

При постоянной теплоемкости (из ур. (1))

−вид на TS – диаграмме

Подкасательная к кривой процесса в любой её точке определяет значение истинной теплоёмкости C V .

Подкасательная будет положительной только в том случае, если кривая будет обращена выпуклостью вниз.

Площадь под кривой процесса 1-2 на TS – диаграмме дает в масштабе количество подведенной (или отведенной в процессе 2-1) теплоты q , равное изменению внутренней энергии U 2 - U 1 .

    Изобарный процесс

В изобарном процессе давление постоянное p = const

В этом случае

из (2)

Следовательно, при p = const как и при V = const изобара является логарифмической кривой, поднимается следа направо и обращена выпуклостью вниз.

Подкасательная к кривой 1-2 в любой её точке дает значения истинной теплоёмкости C p .

Площадь под кривой дает кол-во теплоты q , которая сообщается газу при p = const , равное изменению энтальпии i 2 - i 1 .

    Политропный процесс

В политропном процессе.Теплоёмкость в этом процессе

Отсюда, для конечного изменения состояния газа

Политропный процесс на TS – диаграмме изображается кривой, расположение которой зависит от показателя n .

    Круговой процесс. Цикл Карно.

Изобразим в TS – диаграмме произвольный обратимый цикл 1 a 2 b 1 .

В процессе 1 a 2 рабочее тело получает кол-во теплоты q 1 , численно равное площади под кривой 1 a 2, а в процессе 2-b -1 отдает кол-во теплоты q 2 , численно равное площади под кривой 2-b -1.

Часть теплоты

переходит в работу цикла l (∆ u =0 в цикле).

Работа цикла положительна, если цикл проходит по часовой стрелке и отрицательна, если против часовой стрелки (направление цикла в pV и TS − диаграммах одинакова).

Термический к.п.д. кругового процесса

Изменение энтропии в любом цикле равно нулю.

Цикл Карно состоит из двух изотерм и двух адиабат. В TS – диаграмме он будет изображаться в виде прямоугольника (горизонтальные линии – изотермы, вертикальные – адиабаты)


Количество теплоты, подведенное к рабочему телу, числено равно площади прямоугольника 12S 2 S 1 :

Количество теплоты, отведенное к холодильнику, соответствует площади прямоугольника 34S 1 S 2 :

Теплота, эквивалентная работе цикла, равная площади цикла

Термический к.п.д. цикла

Для обратного цикла (рис. справа)

Холодильный коэффициент обратного цикла

Среднеинтегральная температура

В произвольном обратимом цикле подвод и отвод теплоты происходит при переменных температурах. Для упрощения термодинамических исследований вводится понятие среднеинтегральной температуры.

Рассмотрим произвольный политропный процесс в TS – диаграмме, в котором к рабочему телу подводится теплота q (процесс 1-2).

Под среднеинтегральной температурой рабочего тела в процессе 1-2 понимается температура, которая равна высоте прямоугольника abdc равновеликого площади a 12 b под кривой процесса 1-2, т.е

Поскольку

а отрезок

Таким образом, среднеинтегральная температура газа для любого процесса равна отношению кол-ва, теплоты, сообщаемого газу или отбираемого от него, к изменению энтропии.

Для любого политропного процесса

и среднеинтегральная температура (из (*))

Отсюда видно, что среднеинтегральная температура в любом политропном процессе зависит только от начальной T 1 и конечной T 2 температур и не зависит от характера процесса.

В произвольном цикле, в котором сжатие и расширение газа являются адиабатными (участки 1-2, 3-4), кол-во теплоты подводимой на участок 2-3

и отводимой на участке 4-1

Тогда термический к.п.д. цикла

,

то есть термический к.п.д. произвольного цикла равен термическому к.п.д. цикла Карно, осуществляемому между среднеинтегральными температурами процессов подводя T 1 Cp и отводя T 2 Cp теплоты.

Обобщенный цикл Карно

Цикл Карно имеет наивысший термический к.п.д. однако возможны и другие циклы, которые при некоторых дополнительных условиях могут иметь термический к.п.д., равный к.п.д. цикла Карно.

Рассмотрим пример такого цикла на рис. показан цикл Карно 1-2-3-4, состоящий, из двух адиабат 2-3, 4-1 и двух изотерм 1-2, 3-4.

Проведём из точки 1 и 2 две эквидистантные кривые 1-6 и 2-5 до пересечения с изотермой T 2 = const и рассмотрим обратный цикл 1-2-5-6, состоящий из двух изотерм и двух эквидистантных кривых 6-1(политропы) и 2-5.

В процессе 1-2 к рабочему телу при температуре T 1 = const подводится кол-во теплоты

В процессе 2-5 от рабочего тела отводится кол-во теплоты, равное площади фигуры 9-5-2-10.

В процессе 5-6 от рабочего тела при T 2 = const отводится кол-во теплоты

В процессе 6-1 к рабочему телу подводится кол-во теплоты q 6-1 , равное площади 7-6-1-8.

Поскольку кривые 1-6, 2-5 эквидистантны, то пл. 7618 = пл. 952-10 следовательно, кол-во теплоты также одинаково.

Это показывает, что промежуточные теплоприемники и теплопередатчики являются только регенераторами теплоты, которые в процессе 2-5 от рабочего тела отбирают теплоту, а в процессе 6-1 отдают её в том же количестве рабочему телу. Таким образом, 1-2-5-6 действительными внешними источниками являются теплопередатчик с температурой T 1 и теплоприёмник с температурой T 2 .

Теплота, превращаемая в цикле в работу

Термический к.п.д. определяется по формуле

То есть, термический к.п.д. рассматриваемого цикла равен к.п.д. цикла Карно.

Термодинамический цикл, в котором отвод теплоты от рабочего тела осуществляется в одном или нескольких процессах цикла для подвода в одном или нескольких процессах называется регенеративным циклом.

В отличие от цикла Карно, для регенеративного цикла необходим промежуточный источник, аккумулирующий теплоту.

Термодинамическая шкала температур

При использовании различных термодинамических тел шкала получается неравномерной из-за особенностей теплового расширения этих веществ.

Второй закон термодинамики позволяет построить шкалу температур, не зависящую от свойств термометрического тела (предложена Кельвином)

В цикле Карно термический к.п.д. не зависит от свойств рабочего тела, а является функцией температур горячего и холодного источника.

Термический к.п.д.

Таким образом, отношение температур рабочего тела может быть определено отношением теплоты. Отсюда следует, что если циклы Карно (рис.) образованы с помощью эквидистантных изотерм, то в этих циклах в работу превращается одинаковое кол-во теплоты.

Пусть изотермы температур T 0 и T k соответствуют температурам таяния льда (0 °С) и кипение воды (100 °С).

В цикле Карно 1234 в работу превращается теплота q равная площади фигуры 1234 . Если разбить эту площадь сеткой равностоящих изотерм на 100 равных частей, в каждом из полученных циклов Карно в работу будет превращаться кол-во теплоты 0,01 q . Температурный интервал между изотермами составит 1 °С.

Аналогично можно построить шкалу, лежащую ниже изотермы с температурой T 0 (0 °С).

За нижнюю точку термодинамической шкалы принята температура, при которой термический к.п.д. цикла Карно =1. Согласно

при T 2 =0 . Более низкой температуры существовать не может, поскольку в этом случае , что противоречит второму закону термодинамики.

Следовательно T =0 (-273.15 ) – это наименьшая возможная температура и она может быть принята за начальную постоянную естественную точку температурной шкалы. Таким образом, абсолютная температура не может иметь отрицательных значений.

Термодинамическая шкала температур получена для идеального газа.

Работа в термодинамике, так же как и в механике, определяется произведени­ем действующей на рабочее тело силы на путь ее действия. Рассмотрим газ массой М и объемом V , заключенный в эластичную оболочку с поверхностью F (рисунок 2.1). Если газу сообщить некоторое количество теплоты, то он будет расширяться, совершая при этом работу против внешнего давления р , оказываемого на него средой. Газ дей­ствует на каждый элемент оболочки dF с силой, равной pdF и, перемещая ее по нормали к поверхности на расстояние dn , совершает элементарную работу pdFdn .

Рис. 2.1 – К определению работы расширения

Общую работу, совершенную в течение бесконечно малого процесса, получим, интегрируя данное выражение по всей поверхности F оболочки:

.

Из рисунок 2.1 видно, что изменение объема dV выражается в виде интеграла по поверхности: , следовательно

δL = pdV. (2.14)

При конечном изменении объема работа против сил внешнего давления, называе­мая работой расширения, равна

Из (2.14) следует, что δL и dV всегда имеют одинаковые знаки:

если dV > 0, то и δL > 0, т.е. при расширении работа тела положительна, при этом тело само совершает работу;

если же dV < 0, то и δL< 0, т. е. при сжатии работа тела отрицательна: это означает, что не тело совершает работу, а на его сжатие затрачивается работа извне.

Единицей измерения работы в СИ яв­ляется джоуль (Дж).

Отнеся работу расширения к 1 кг массы рабочего тела, получим

l = L/M; δl = δL/М = pdV/M = pd(V/M) = pdv. (2.16)

Величина l, представляющая собой удельную работу, совершаемую систе­мой, содержащей 1 кг газа, равна

Поскольку в общем случае р – вели­чина переменная, то интегрирование воз­можно лишь тогда, когда известен закон изменения давления p = p(v).

Формулы (2.14) – (2.16) справедливы только для равновесных процессов, при которых давление рабочего тела равно давлению окружающей среды.

В термодинамике для исследования равновесных процессов широко исполь­зуют рv – диаграмму, в которой осью аб­сцисс служит удельный объем, а осью ординат – давление. Поскольку состоя­ние термодинамической системы опреде­ляется двумя параметрами, то на рv – диаграмме оно изображается точкой. На рисунке 2.2 точка 1 соответствует начально­му состоянию системы, точка 2 – конеч­ному, а линия 12 – процессу расшире­ния рабочего тела от v 1 до v 2 .

При бесконечно малом изменении объема dv площадь заштрихованной вертикальной полоски равна pdv = δl, следовательно, работа процесса 12 изо­бражается площадью, ограниченной кри­вой процесса, осью абсцисс и крайними ординатами. Таким образом, работа из­менения объема эквивалентна площади под кривой процесса в диаграмме рv .


Рис. 2.2 – Графическое изображение работы в рv – координтах

Каждому пути перехода системы из состояния 1 в состояние 2 (например, 12, 1а2 или 1b2) соответствует своя работа расширения: l 1 b 2 >l 1 a 2 >l 12 Следова­тельно, работа зависит от характера термодинамического процесса, а не явля­ется функцией только исходного и ко­нечного состояний системы. С другой стороны, ∫pdv зависит от пути интегри­рования и, следовательно, элементарная работа δl не является полным диффе­ренциалом.

Работа всегда связана с перемеще­нием макроскопических тел в простран­стве, например перемещением поршня, деформацией оболочки, поэтому она ха­рактеризует упорядоченную (макрофизическую) форму передачи энергии от од­ного тела к другому и является мерой переданной энергии.

Поскольку величина δl пропорцио­нальна увеличению объема, то в качестве рабочих тел, предназначенных для пре­образования тепловой энергии в механи­ческую, целесообразно выбирать такие, которые обладают способностью значи­тельно увеличивать свой объем. Этим качеством обладают газы и пары жидко­стей. Поэтому, например, на тепловых электрических станциях рабочим телом служат пары воды, а в двигателях внут­реннего сгорания – газообразные про­дукты сгорания того или иного топлива.

2.4 Работа и теплота

Выше отмечалось, что при взаимодействии термодинамической системы с окружающей средой происходит обмен энергией, причем один из способов ее передачи – работа, а другой – теплота.

Хотя работа L и количество теплоты Q имеют размерность энергии, они не являются видами энергии. В отличие от энергии, которая является параметром состояния системы, работа и теплота зависят от пути перехода системы от одного состояния в другое. Они представляют две формы передачи энергии от одной системы (или тела) к другой.

В первом случае имеет место макрофизическая форма обмена энергией, которая обусловлена механическим воздействием одной системы на другую, сопровождаемым видимым перемещением дру­гого тела (например, поршня в цилиндре двигателя).

Во втором случае осуществлена микрофизическая (т.е. на моле­кулярном уровне) форма передачи энергии. Мера количества пе­реданной энергии – количество теплоты. Таким образом, работа и теплота – энергетические характеристики процессов механическо­го и теплового взаимодействия системы с окружающей средой. Эти два способа передачи энергии эквивалентны, что вытекает из зако­на сохранения энергии, но неравноценны. Работа может непосред­ственно преобразовываться в теплоту – одно тело передает при тепловом контакте энергию другому. Количество же теплоты Q непосредственно расходуется только на изменение внутренней, энергии системы. При превращении теплоты в работу от одного тела – источника теплоты (ИТ) теплота передается другому – рабо­чему телу (РТ), а от него энергия в виде работы передается третьему телу – объекту работы (ОР).

Следует подчеркнуть, что если мы записываем уравнение термодинамики, то входящие в уравнения L и Q означают энергию, полученную соответственно макро– или микрофизическим спосо­бом.

На рис 3.3 представлена фазовая диаграмма в P – V координатах, а на рис.3.4 - в T – S координатах.

Рис.3.3. Фазовая Р-V диаграмма Рис.3.4. Фазовая Т-S диаграмма

Обозначения :

т + ж – область равновесного сосуществования твердой и жидкой

т + п – область равновесного сосуществования твердой и паро-

ж + п – область равновесного сосуществования жидкой и паровой

Если на Р – Т диаграмме области двухфазных состояний изображались кривыми, то P – V и T – S диаграммах – это некоторые площади.

Линия AKF называется пограничной кривой. Она в свою очередь разделяется на нижнюю пограничную кривую (участок АК) и верхнюю пограничную кривую (участок KF).

На рис.3.3 и 3.4 линия BF, где смыкаются области трех двухфазных состояний, - это растянутая тройная точка Т с рис3.1 и 3.2.

При плавлении вещества, которое, как и парообразование, протекает при постоянной температуре, образуется равновесная двухфазная смесь твердой и жидкой фаз. Значения удельного объема жидкой фазы в составе двухфазной смеси снимаются на рис3.3 с кривой АN, а значения удельного объема твердой фазы – с кривой ВЕ.

Внутри области, ограниченной контуром AKF, вещество представляет собой смесь двух фаз: кипящей жидкости (Ж) и сухого насыщенного пара (П).

Вследствие аддитивности объема удельный объем такой двухфазной смеси определяется по формуле

удельная энтропия:

Особые точки фазовых диаграмм

Тройная точка

Тройная точка – это точка, в которой сходятся кривые равновесия трех фаз. На рис.3.1 и 3.2 – это точка Т.

Некоторые чистые вещества, например, сера, углерод и др., в твердом агрегатном состоянии имеют несколько фаз (модификаций).

В жидком и газообразном состояниях модификации отсутствуют.



В соответствии с уравнением (1.3) в однокомпонентной термодеформационной системе одновременно находиться в равновесии могут не более трех фаз.

Если у вещества в твердом состоянии существуют несколько модификаций, то общее количество фаз вещества в сумме превышает три и такое вещество должно иметь несколько тройных точек. В качестве примера на рис.3.5 приведена фазовая Р –Т диаграмма вещества, имеющего две модификации в твердом агрегатном состоянии.

Рис.3.5. Фазовая Р-Т диаграмма

вещества с двумя кристалличес-

кими фазами

Обозначения :

I – жидкая фаза;

II – газообразная фаза;

III 1 и III 2 – модификации в твердом агрегатном состоянии

(кристаллические фазы)

В тройной точке Т 1 в равновесии находятся: газообразная, жидкая и кристаллическая фаза III 2. Эта точка является основной тройной точкой.

В тройной точке Т 2 в равновесии находятся: жидкая и две кристаллические фазы.

В тройной точке Т 3 в равновесии находятся газообразная и две кристаллические фазы.

У воды известно пять кристаллических модификаций (фаз): III 1, III 2 , III 3 , III 5 , III 6 .

Обычный лед – это кристаллическая фаза III 1 , а остальные модификации образуются при очень больших давлениях, составляющих тысячи МПа.

Обычный лед существует до давления 204,7 МПа и температуры – 22 0 С.

Остальные модификации (фазы) – это лед плотнее воды. Один из этих льдов – « горячий лед » наблюдался при давлении 2000 МПа вплоть до температуры + 80 0 С.

Термодинамические параметры основнойтройной точки воды следующие:

Т тр = 273,16 К = 0,01 0 С;

Р тр = 610,8 Па;

V тр = 0,001 м 3 /кг.

Аномалия кривой плавления () существует только для обычного льда.

Критическая точка

Как следует из фазовой P – V диаграммы (рис.3.3) по мере роста давления различие между удельными объемами кипящей жидкости (V") и сухого насыщенного пара (V"") постепенно уменьшается и в точке К становится равным нулю. Такое состояние называется критическим, а точка К – критической точкой вещества.

P к, T к, V к,S к – критические термодинамические параметры вещества.

Например, для воды:

P к = 22,129 МПа;

T к = 374, 14 0 С;

V к = 0, 00326 м 3 /кг

В критической точке свойства жидкой и газообразной фаз одинаковы.

Как следует из фазовой Т – S диаграммы (рис 3.4) в критической точке теплота парообразования, изображаемая как площадь под горизонтальной линией фазового перехода (С" - С""), от кипящей жидкости к сухому насыщенному пару, равна нулю.

Точка К для изотермы Т к в фазовой P – V диаграмме (рис.3.3) является точкой перегиба.

Изотерма Т к, проходящая через точку К, является предельной изотермой двухфазной области, т.е. отделяет область жидкой фазы от области газообразной.

При температуре выше Т к изотермы уже не имеют ни прямолинейных участков, свидетельствующих о фазовых переходах, ни точки перегиба, характерной для изотермы Т к, а постепенно принимают вид плавных кривых, близких по форме к изотермам идеального газа.

Понятия «жидкость» и «газ» (пар) в известной степени условны, т.к. взаимодействия молекул в жидкости и газе имеют общие закономерности, отличаясь лишь количественно. Этот тезис можно проиллюстрировать рисунком3.6, где переход из точки Е газообразной фазы в точку L жидкой фазы произведен в обход критической точки К по траектории EFL.

Рис.3.6. Два варианта фазового перехода

из газообразной в жидкую фазу

При переходе по линии AD в точке С происходит разделение вещества на две фазы и затем вещество постепенно переходит из газообразной (парообразной) фазы в жидкую.

В точке С свойства вещества изменяются скачком (в фазовой P – V диаграмме точка С фазового перехода превращается в линию фазового перехода (С" - С"")).

При переходе по линии EFL превращение газа в жидкость происходит непрерывно, так как линия EFL нигде не пересекает кривую парообразования ТК, где вещество одновременно существует в виде двух фаз: жидкой и газообразной. Следовательно, при переходе по линии EFL вещество не будет распадаться на две фазы и останется однофазным.

Критическая температура Т к – это предельная температура равновесного сосуществования двух фаз.

Применительно к термодинамическим процессам в сложных системах это классическое лаконичное определение Т к может быть развернуто следующим образом:

Критическая температура Т к - это нижняя температурная граница области термодинамических процессов, в которых невозможно появление двухфазного состояния вещества «газ - жидкость» ни при каких изменениях давления и температуры. Это определение иллюстрируются рис.3.7 и 3.8. Из этих рисунков следует, что эта область ограниченная критической температурой, охватывает только газообразное состояние вещества (газовую фазу). Газообразное состояние вещества, именуемое паром в эту область не входит.

Рис. 3.7. К определению критической Рис.3.8.К определению критиче-

температуры ской температуры

Из этих рисунков следует, что эта заштрихованная область, ограниченная критической температурой, охватывает только газообразное состояние вещества (газовую фазу). Газообразное состояние вещества, именуемое паром в эту область не входит.

Используя понятие критической точки, можно из общего понятия «газообразное состояние вещества» выделить понятие «пар».

Пар – это газообразная фаза вещества в области температур ниже критической.

В термодинамических процессах, когда линия процесса пересекает или кривую парообразования ТК, или кривую сублимации 3, газообразная фаза всегда сначала является паром.

Критическое давление Р к – это давление, выше которого разделение вещества на две одновременно и равновесно сосуществующие фазы: жидкость и газ невозможно при любой температуре.

Это классическое определение Р к, применительно к термодинамическим процессам в сложных системах можно сформулировать более подробно:

Критическое давление Р к – это нижняя по давлению граница области термодинамических процессов, в которых невозможно появление двухфазного состояния вещества «газ - жидкость» ни при каких изменениях давления и температуры. Это определение критического давления иллюстрируется рис.3.9. и 3.10. Из этих рисунков следует, что эта область, ограниченная критическим давлением, охватывает не только часть газообразной фазы, расположенную выше изобары Р к, но и часть жидкой фазы, расположенную ниже изотермы Т к.

Для сверхкритической области за вероятную (условную) границу «жидкость-газ» условно принимают критическую изотерму.

Рис.3.9.К определению критичес - Рис.3.10. К определению критического

кого давления давления

Если давление перехода много больше давления в критической точке, то вещество из твердого (кристаллического) состояния будет переходить прямо в газообразное состояние, минуя жидкое состояние.

Из фазовых Р-Т диаграмм аномального вещества (рис 3.6, 3.7, 3.9) это не очевидно, т.к. на них не показана та часть диаграммы, где вещество, имеющее при больших давлениях несколько кристаллических модификаций (и, соответственно, несколько тройных точек), снова приобретает нормальные свойства.

На фазовой Р – Т диаграмме нормального вещества рис. 3.11 этот переход из твердой фазы сразу в газообразную показан в виде процесса А"D".

Рис. 3.11. Переход нормального

вещества из твердой фазы сразу в

газообразную при Р>Ртр

Переход вещества из твердой фазы в паровую, минуя жидкую, возложен лишь при Р<Р тр. Примером такого перехода, называемого сублимацией, является процесс АD на рис 3.11.

Критическая температура имеет весьма простое молекулярно – кинетическое истолкование.

Объединение свободно движущихся молекул в каплю жидкости при сжижении газа происходит исключительно под действием сил взаимного притяжения. При Т>Т к кинетическая энергия относительного движения двух молекул больше энергии притяжения этих молекул, поэтому образование капель жидкости (т.е. сосуществование двух фаз) невозможно.

Критические точки имеют только кривые парообразования, так как они соответствуют равновесному сосуществованию двух изотропных фаз: жидкой и газообразной. Линии плавления и сублимации не имеют критических точек, т.к. они соответствуют таким двухфазным состояниям вещества, когда одна из фаз (твердая) является анизотропной.

Закритическая область

В фазовой Р-Т диаграмме – это область, расположенная правее и выше критической точки, примерно там, куда можно было бы мысленно продолжить кривую насыщения.

В современных прямоточных паровых котлах парообразование осуществляется в закритической области.

Рис.3.12. Фазовый переход в Рис.3.13. Фазовый переход в докритической

докритической и закритической и закритической областях Р-V диаграммы

областях Р-Т диаграммы

Термодинамические процессы в закритической области протекают с рядом отличительных особенностей.

Рассмотрим изобарный процесс AS в докритической области, т.е. при . Точка А соответствует жидкой фазе вещества, которая при достижении температуры Т н начинает превращаться в пар. Этому фазовому переходу соответствует точка В на рис.3.12 и отрезок В"В"" на рис 3.13. При переходе через кривую насыщения ТК свойства вещества изменяются скачком. Точка S соответствует газообразной фазе вещества.

Рассмотрим изобарный процесс A"S" при давлении . В точке А" вещество находится в жидкой фазе, а в точке S"- в газообразной, т.е. в различных фазовых состояниях. Но при переходе от точки A" к S" скачкообразного изменения свойств не происходит: свойства вещества меняются непрерывно и постепенно. Скорость этого изменения свойств вещества на линии A"S" различна: мала вблизи точек А" и S" и резко возрастает при входе в закритическую область. На любой изобаре в закритической области можно указать точки максимальной скорости изменения: температурного коэффициента объемного расширения вещества , энтальпии, внутренней энергии, вязкости, теплопроводности и т.д.

Таким образом, в закритической области развиваются явления, похожие на фазовые переходы, но двухфазное состояние вещества «жидкость - газ» при этом не наблюдается. Кроме этого, границы закритической области размыты.

При Р<Р к, т.е. в докритической области, на фазовое превращение «жидкость - пар» требуется затратить скрытую теплоту парообразования, которая является как бы «тепловым барьером» между жидкой и паровой фазами.

Нечто подобное наблюдается в закритической области. На рис3.14 представлена типичная картина изменения удельной изобарной теплоемкости при Р>Р к.

Рис.3.14. Удельная изобарная

теплоемкости при закритическом

давлении.

Так как Q р = С р dТ, то площадь под кривой Ср(Т) – это теплота, необходимая для превращения жидкости (точка А’) в газ (точка S’) при закритическом давлении. Пунктирной линией А’М S’ показана типичная зависимость Ср от температуры вдокритической области.

Таким образом, максимумы на кривой С р (Т) в закритической области, означающие дополнительные затраты теплоты на нагревание вещества, также выполняют схожие функции «теплового барьера» между жидкостью и газом в этой области.

Как показали исследования, положения максимумов не совпадают, что свидетельствует об отсутствии единой линии раздела жидкости и пара в закритической области. В ней существует лишь широкая и размытая зона, где превращение жидкости в пар происходит наиболее интенсивно.

Наиболее интенсивно эти превращения происходят при давлениях, не слишком превышающих критическое (Р к). По мере повышения давления явления превращение жидкости в пар сглаживаются и при больших давлениях проявляются очень слабо.

Таким образом, при Р>Р к существуют, но не могут сосуществовать одновременно и равновесно жидкая фаза, газообразная фаза и некоторая промежуточная фаза. Эту промежуточную фазу иногда называют метафазой , она сочетает в себе свойства жидкости и газа.

Из-за резкого изменения термодинамических параметров, теплофизических характеристик и характеристических функций в закритической области погрешности их экспериментального определения в этой области в десять с лишним раз больше, чем при докритических давлениях.

Термодинамический процесс (тепловой процесс) – изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).

Система, в которой идёт тепловой процесс, называется рабочим телом.

Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями. Такой процесс приближённо реализуется в тех случаях, когда изменения происходят достаточно медленно, т. е. процесс является квазистатическим.

Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.

Виды тепловых процессов:

Адиабатный процесс - без теплообмена с окр. средой;

Изохорный процесс - происходящий при постоянном объёме;

Изобарный процесс - происходящий при постоянном давлении;

Изотермический процесс - происходящий при постоянной температуре;

Изоэнтропийный процесс - происходящий при постоянной энтропии;

Изоэнтальпийный процесс - происходящий при постоянной энтальпии;

Политропный процесс - происходящий при постоянной теплоёмкости.

Уравнение Менделеева-Клайперона (уравнение состояния идеального газа):

PV = nRT, где n – число молей газа, P – давление газа, V – объем газа, T – температура газа, R – универсальная газовая постоянная

Изопроцессы идеального газа. Их изображение в P - V диаграммах.

1) Изобарный процесс p = const, V/T = const

2) Изохорный процесс V = const, p/T = const

3) Изотермический процесс T = const, pV = const

Термодинамические процессы. Уравнение Менделеева-Клапейрона. Изопроцессы идеального газа. Их изображение на Р- V диаграммах.

Термодинамические процессы. Совокупность изменяющихся состояний рабочего тела называется термодинамическим процессом.

Идеальный газ - изучаемый в термодинамике воображаемый газ, у которого отсутствуют силы межмолекулярного притяжения н отталкивания, а сами молекулы представляют собой материальные точки, не имеющие объема. Многие реальные газы по своим физическим свойствам весьма близки к идеальному газу.

Основными процессами в термодинамике являются:

    изохорный , протекающий при постоянном объеме;

    изобарный , протекающий при постоянном давлении;

    изотермический , происходящий при постоянной температуре;

    адиабатный , при котором теплообмен с окружающей средой отсутствует;

Изохорный процесс

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv =RT) следует:

p/T =R/v = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

p 2 /p 1 =T 2 /T 1 .

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при c v

q =c v (T 2 - T 1 ).

Т. к.l = 0, то на основании первого закона термодинамики Δu =q , а значит изменение внутренней энергии можно определить по формуле:

Δu =c v (T 2 - T 1 ).

Изменение энтропии в изохорном процессе определяется по формуле:

s 2 – s 1 = Δs = c v ln(p 2 /p 1 ) = c v ln(T 2 /T 1 ).

Изобарный процесс

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

v / T =R / p =const

v 2 /v 1 =T 2 /T 1 ,

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

l =p (v 2 – v 1 ).

Т. к. pv 1 =RT 1 иpv 2 =RT 2 , то

l =R (T 2 – T 1 ).

Количество теплоты при c p = const определяется по формуле:

q =c p (T 2 – T 1 ).

Изменение энтропии будет равно:

s 2 – s 1 = Δs = c p ln(T 2 /T 1 ).

Изотермический процесс

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pv = RT = const

p 2 / p 1 =v 1 / v 2 ,

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

l =RT ln (v 2 – v 1 ) =RT ln (p 1 – p 2 ).

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

q =l.

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

s 2 – s 1 = Δs =R ln(p 1 /p 2 ) =R ln(v 2 /v 1 ).

Адиабатный процесс

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

du +p dv = 0

Δu +l = 0,

следовательно

Δu = -l.

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через c ад, и условие dq = 0 выразим следующим образом:

dq =c ад dT = 0.

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (c ад = 0).

Известно, что

с p /c v =k

и уравнение кривой адиабатного процесса (адиабаты) в p, v -диаграмме имеет вид:

pv k = const.

В этом выражении k носит названиепоказателя адиабаты (так же ее называют коэффициентом Пуассона).

Значения показателя адиабаты k для некоторых газов:

k воздуха = 1,4

k перегретого пара = 1,3

k выхлопных газов ДВС = 1,33

k насыщенного влажного пара = 1,135

Из предыдущих формул следует:

l = - Δu = c v (T 1 – T 2 );

i 1 – i 2 = c p (T 1 – T 2 ).

Техническая работа адиабатного процесса (l техн) равна разности энтальпий начала и конца процесса (i 1 – i 2 ).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным . ВT, s -диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называетсяреальным адиабатным процессом .

Уравнение Менделеева-Клапейрона

Газы нередко бывают реагентами и продуктами в химических реакциях. Не всегда удается заставить их реагировать между собой при нормальных условиях. Поэтому нужно научиться определять число молей газов в условиях, отличных от нормальных.

Для этого используют уравнение состояния идеального газа (его также называют уравнением Клапейрона-Менделеева):

PV = n RT

где n – число молей газа;

P – давление газа (например, в атм ;

V – объем газа (в литрах);

T – температура газа (в кельвинах);

R – газовая постоянная (0,0821 л·атм /моль·K).

Например, в колбе объемом 2,6 л находится кислород при давлении 2,3 атм и температуре 26 о С. Вопрос: сколько молей O 2 содержится в колбе?

Из газового закона найдем искомое число молей n :

Не следует забывать преобразовывать температуру из градусов Цельсия в кельвины: (273 о С + 26 о С) = 299 K. Вообще говоря, чтобы не ошибиться в подобных вычислениях, нужно внимательно следить за размерностью величин, подставляемых в уравнение Клапейрона-Менделеева. Если давление дается в мм ртутного столба, то нужно перевести его в атмосферы, исходя из соотношения: 1атм = 760 мм рт. ст. Давление, заданное в паскалях (Па), также можно перевести в атмосферы, исходя из того, что 101325 Па = 1атм .

Билет 16

Вывод основного уравнения молекулярно-кинетической теории. Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Вывод основного уравнения МКТ.

Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Билет 17.

Первое начало термодинамики. Работа газа при изменении объема. Вычислить работу изотермического расширения газа.

Количество теплоты , полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. В циклическом процессе внутренняя энергия не изменяется.

Работа при изотермическом расширении газа вычисляется как площадь фигуры под графиком процесса.


Билет 18.

Теплоемкость идеального газа.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c. c = Q / (mΔT).

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе (V = const) и C p – молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид (формула Майера):

C p = C V + R.

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

Билет 19.

Цикл Карно. Тепловая и холодильная машины. КПД цикла Карно.

В термодинамике цикл Карно́ или процесс Карно - это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой - холодильником.

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году.

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно

Пусть тепловая машина состоит из нагревателя с температурой Тн, холодильника с температурой Тх и рабочего тела .

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две - при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура ) и S (энтропия ).

1. Изотермическое расширение (на рис. 1 - процесс A→Б). В начале процесса рабочее тело имеет температуру Тн, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q. При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 - процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника Тх, тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 - процесс В→Г). Рабочее тело, имеющее температуру Тн, приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты Q. Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 - процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Обратный цикл Карно

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно , состоящий из следующих стадии: адиабатического сжатия за счёт совершения работы (на рис. 1 - процесс В→Б); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 - процесс Б→А); адиабатического расширения (на рис. 1 - процесс А→Г); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 - процесс Г→В).

Билет 20.

Второе начало термодинамики. Энтропия. Третье начало термодинамики.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов, которые могут происходить в термодинамических системах .

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода , показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Второе начало термодинамики является постулатом , не доказываемым в рамках классической термодинамики . Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Постулат Клаузиуса : «Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому» (такой процесс называется процессом Клаузиуса ).

Постулат Томсона (Кельвина) : «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона ).

Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии ).

Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.

В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Третье начало термодинамики (теорема Нернста ) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю . Является одним из постулатов термодинамики , принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система» .

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение). Третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики).

Термодинамическая энтропия S , часто просто именуемая энтропия , - физическая величина , используемая для описания термодинамической системы , одна из основных термодинамических величин . Энтропия является функцией состояния и широко используется в термодинамике , в том числе химической .

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: